2,905 research outputs found

    Independence of Odor Quality and Absolute Sensitivity in a Study of Aging

    Get PDF
    Young, middle-aged, and senior subjects performed tasks designed to examine whether odor quality discrimination varies independently of sensitivity. One task entailed detection of 2-heptanone and the others AB-X discrimination of quality for sets of 2-heptanone and homologues or 2-heptanone and non-ketones. Subjects sought to discriminate either at intensity-matched concentrations far above threshold, but fixed across subjects, or at levels adjusted to neutralize differences in sensitivity. The young and middle-aged groups manifested the same absolute sensitivity, but the senior group poorer sensitivity. Performance in quality discrimination, however, declined progressively. Performance lacked an association with absolute sensitivity, no matter how examined. These data, in conjunction with converging findings from patients with neurological damage, studies of brain imaging, and the relation between concentration and quality discrimination in younger persons, suggest largely independent processing of odor quality and intensity

    An Alternative Approach to the Calculation and Analysis of Connectivity in the World City Network

    Full text link
    Empirical research on world cities often draws on Taylor's (2001) notion of an 'interlocking network model', in which office networks of globalized service firms are assumed to shape the spatialities of urban networks. In spite of its many merits, this approach is limited because the resultant adjacency matrices are not really fit for network-analytic calculations. We therefore propose a fresh analytical approach using a primary linkage algorithm that produces a one-mode directed graph based on Taylor's two-mode city/firm network data. The procedure has the advantage of creating less dense networks when compared to the interlocking network model, while nonetheless retaining the network structure apparent in the initial dataset. We randomize the empirical network with a bootstrapping simulation approach, and compare the simulated parameters of this null-model with our empirical network parameter (i.e. betweenness centrality). We find that our approach produces results that are comparable to those of the standard interlocking network model. However, because our approach is based on an actual graph representation and network analysis, we are able to assess cities' position in the network at large. For instance, we find that cities such as Tokyo, Sydney, Melbourne, Almaty and Karachi hold more strategic and valuable positions than suggested in the interlocking networks as they play a bridging role in connecting cities across regions. In general, we argue that our graph representation allows for further and deeper analysis of the original data, further extending world city network research into a theory-based empirical research approach.Comment: 18 pages, 9 figures, 2 table

    Managing soil fertility diversity to enhance resource use efficiencies in smallholder farming systems: a case from Murewa District, Zimbabwe

    Get PDF
    Smallholder farms in sub-Saharan African exhibit substantial heterogeneity in soil fertility, and nutrient resource allocation strategies that address this variability are required to increase nutrient use efficiencies. We applied the Field-scale resource Interactions, use Efficiencies and Long-term soil fertility Development (FIELD) model to explore consequences of various manure and fertilizer application strategies on crop productivity and soil organic carbon (SOC) dynamics on farms varying in resource endowment in a case study village in Murewa District, Zimbabwe. FIELD simulated a rapid decline in SOC and maize yields when native woodlands were cleared for maize cultivation without fertilizer inputs coupled with removal of crop residues. Applications of 10 t manure ha-1 year-1 for 10 years were required to restore maize productivity to the yields attainable under native woodland. Long-term application of manure at 5 and 3 t ha-1 resulted in SOC contents comparable to zones of high and medium soil fertility observed on farms of wealthy cattle owners. Targeting manure application to restore SOC to 50–60% of contents under native woodlands was sufficient to increase productivity to 90% of attainable yields. Short-term increases in crop productivity achieved by reallocating manure to less fertile fields were short-lived on sandy soils. Preventing degradation of the soils under intensive cultivation is difficult, particularly in low input farming systems, and attention should be paid to judicious use of the limited nutrient resources to maintain a degree of soil fertility that supports good crop response to fertilizer applicatio

    Spontaneous Ultra-Weak Photon Emission from Human Hands Is Time Dependent

    Get PDF
    Ultra-weak photon emission in the visible range was measured on palm and dorsal side of left and right hand by means of a low noise photomultiplier system. To study the dynamics of this photon emission in a 24 h period photon emission was recorded in 2 h intervals in 5 experiments, utilizing strict protocols for dark adaptation and recording of subjects. Fluctuations in photon emission in the course of 24 h period were demonstrated for each anatomic location. Mean photon emission over the 24 h period differed both between subjects and hand locations. To detect a pattern in the fluctuations the mean value for each location of each subject in each experiment was utilized to calculate fluctuations during the course of 24 h for each anatomical location. The fluctuations in photon emission in the course of 24 h were more at dorsal sides than palm sides. The correlation between fluctuations in palm and dorsal side was not apparent. During the 24 h period a change in left-right symmetry occurred for the dorsal side but not for the palm of the hands. Photon emission at the left dorsal location was high at night, while the right dorsal side emitted most during the day. It is concluded that a daily rhythm in photon emission can be recorded from both the dorsal and palm sides of the hands

    Eventpad : a visual analytics approach to network intrusion detection and reverse engineering

    Get PDF

    Dynamic control of selectivity in the ubiquitination pathway revealed by an ASP to GLU substitution in an intra-molecular salt-bridge network

    Get PDF
    Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an “open”, binding competent, and a “closed”, binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity

    Artificial neural networks for 3D cell shape recognition from confocal images

    Full text link
    We present a dual-stage neural network architecture for analyzing fine shape details from microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease. Characteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification for diagnostic and theragnostic use.Comment: 17 pages, 8 figure
    corecore