8,758 research outputs found
Invariant submanifold for series arrays of Josephson junctions
We study the nonlinear dynamics of series arrays of Josephson junctions in
the large-N limit, where N is the number of junctions in the array. The
junctions are assumed to be identical, overdamped, driven by a constant bias
current and globally coupled through a common load. Previous simulations of
such arrays revealed that their dynamics are remarkably simple, hinting at the
presence of some hidden symmetry or other structure. These observations were
later explained by the discovery of (N - 3) constants of motion, each choice of
which confines the resulting flow in phase space to a low-dimensional invariant
manifold. Here we show that the dimensionality can be reduced further by
restricting attention to a special family of states recently identified by Ott
and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an
invariant submanifold of dimension one less than that found earlier. We derive
and analyze the flow on this submanifold for two special cases: an array with
purely resistive loading and another with resistive-inductive-capacitive
loading. Our results recover (and in some instances improve) earlier findings
based on linearization arguments.Comment: 10 pages, 6 figure
Spreading dynamics on spatially constrained complex brain networks
The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way
Synchronization of globally coupled two-state stochastic oscillators with a state dependent refractory period
We present a model of identical coupled two-state stochastic units each of
which in isolation is governed by a fixed refractory period. The nonlinear
coupling between units directly affects the refractory period, which now
depends on the global state of the system and can therefore itself become time
dependent. At weak coupling the array settles into a quiescent stationary
state. Increasing coupling strength leads to a saddle node bifurcation, beyond
which the quiescent state coexists with a stable limit cycle of nonlinear
coherent oscillations. We explicitly determine the critical coupling constant
for this transition
Signal processing with Levy information
Levy processes, which have stationary independent increments, are ideal for
modelling the various types of noise that can arise in communication channels.
If a Levy process admits exponential moments, then there exists a parametric
family of measure changes called Esscher transformations. If the parameter is
replaced with an independent random variable, the true value of which
represents a "message", then under the transformed measure the original Levy
process takes on the character of an "information process". In this paper we
develop a theory of such Levy information processes. The underlying Levy
process, which we call the fiducial process, represents the "noise type". Each
such noise type is capable of carrying a message of a certain specification. A
number of examples are worked out in detail, including information processes of
the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse
Gaussian, and normal inverse Gaussian type. Although in general there is no
additive decomposition of information into signal and noise, one is led
nevertheless for each noise type to a well-defined scheme for signal detection
and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London
Feedback: Still the Simplest and Best Solution
Most engineers are (indirectly) trained to be "feedforward thinkers" and they immediately think of "model inversion" when it comes to doing control. Thus, they prefer to rely on models instead of data, although feedback solutions in most cases are much simpler and more robust
Transfer Entropy as a Log-likelihood Ratio
Transfer entropy, an information-theoretic measure of time-directed
information transfer between joint processes, has steadily gained popularity in
the analysis of complex stochastic dynamics in diverse fields, including the
neurosciences, ecology, climatology and econometrics. We show that for a broad
class of predictive models, the log-likelihood ratio test statistic for the
null hypothesis of zero transfer entropy is a consistent estimator for the
transfer entropy itself. For finite Markov chains, furthermore, no explicit
model is required. In the general case, an asymptotic chi-squared distribution
is established for the transfer entropy estimator. The result generalises the
equivalence in the Gaussian case of transfer entropy and Granger causality, a
statistical notion of causal influence based on prediction via vector
autoregression, and establishes a fundamental connection between directed
information transfer and causality in the Wiener-Granger sense
Impairment in active navigation from trauma and Post-Traumatic Stress Disorder.
The study investigated the impact of trauma exposure and of Post-Traumatic Stress Disorder (PTSD) on spatial processing and active navigation in a sample (n = 138) comprising civilians (n = 91), police officers (n = 22) and veterans (n = 27). Individuals with previous trauma exposure exhibited significantly poorer hippocampal-dependent (allocentric) navigation performance on active navigation in a virtual environment (the Alternative Route task) regardless of whether or not they had PTSD (scoring above 20 on the PTSD Diagnostic Scale). No performance differences were found in static perspective taking (the Four Mountains task). Moreover, an associative information processing bias in those with PTSD interfered with ability to use hippocampal-dependent processing in active navigation. This study provides new evidence of impaired active navigation in individuals with trauma exposure and highlights the importance of considering the relationship between trauma and spatial processing in clinical and occupational settings
- …
