8,758 research outputs found

    Invariant submanifold for series arrays of Josephson junctions

    Full text link
    We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of (N - 3) constants of motion, each choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.Comment: 10 pages, 6 figure

    Spreading dynamics on spatially constrained complex brain networks

    Get PDF
    The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way

    Synchronization of globally coupled two-state stochastic oscillators with a state dependent refractory period

    Full text link
    We present a model of identical coupled two-state stochastic units each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition

    Signal processing with Levy information

    Get PDF
    Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "information process". In this paper we develop a theory of such Levy information processes. The underlying Levy process, which we call the fiducial process, represents the "noise type". Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London

    Feedback: Still the Simplest and Best Solution

    Get PDF
    Most engineers are (indirectly) trained to be "feedforward thinkers" and they immediately think of "model inversion" when it comes to doing control. Thus, they prefer to rely on models instead of data, although feedback solutions in most cases are much simpler and more robust

    Transfer Entropy as a Log-likelihood Ratio

    Full text link
    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic chi-squared distribution is established for the transfer entropy estimator. The result generalises the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense

    Impairment in active navigation from trauma and Post-Traumatic Stress Disorder.

    Get PDF
    The study investigated the impact of trauma exposure and of Post-Traumatic Stress Disorder (PTSD) on spatial processing and active navigation in a sample (n = 138) comprising civilians (n = 91), police officers (n = 22) and veterans (n = 27). Individuals with previous trauma exposure exhibited significantly poorer hippocampal-dependent (allocentric) navigation performance on active navigation in a virtual environment (the Alternative Route task) regardless of whether or not they had PTSD (scoring above 20 on the PTSD Diagnostic Scale). No performance differences were found in static perspective taking (the Four Mountains task). Moreover, an associative information processing bias in those with PTSD interfered with ability to use hippocampal-dependent processing in active navigation. This study provides new evidence of impaired active navigation in individuals with trauma exposure and highlights the importance of considering the relationship between trauma and spatial processing in clinical and occupational settings
    corecore