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ABSTRACT  

The study investigated the impact of trauma exposure and of Post-Traumatic Stress Disorder (PTSD) 

on spatial processing and active navigation in a sample (n = 138) comprising civilians (n = 91), police 

officers (n = 22) and veterans (n = 27). Individuals with previous trauma exposure exhibited 

significantly poorer hippocampal-dependent (allocentric) navigation performance on active navigation 

in a virtual environment (the Alternative Route task) regardless of whether or not they had PTSD 

(scoring above 20 on the PTSD Diagnostic Scale).  No performance differences were found in static 

perspective taking (the Four Mountains task). Moreover, an associative information processing bias in 

those with PTSD interfered with ability to use hippocampal-dependent processing in active navigation. 

This study provides new evidence of impaired active navigation in individuals with trauma exposure   

and highlights the importance of considering the relationship between trauma and spatial processing 

in clinical and occupational settings. 

Keywords: trauma, PTSD, hippocampus, allocentric spatial processing, associative processing, navigation. 

1 INTRODUCTION   

Post-Traumatic Stress Disorder (PTSD) is used to describe stress-related cognitive dysfunction 

among individuals who have not adequately processed traumatic experiences (Brandes, et al. 2002).  

Behaviours and phenomena associated with PTSD include intrusion, avoidance, alterations in arousal 

and negative alterations in mood and cognition (American Psychiatric Association, APA, 2013). 

Considerable neuropsychological research suggests that hippocampal dysfunction co-occurs with the 

manifestation of PTSD (Bremner et al., 1995; Brewin et al., 1996; Sapolsky, 2000; Bremner & Elzinga, 

2002; Astur et al., 2006; Teicher et al., 2003, 2012; Quereshi et al., 2011; Thomaes et al., 2013). 

Contemporary neurocognitive accounts of PTSD specify that a particularly spatial component of 

hippocampal-dependent processing is used to process and contextualise trauma memories (Brewin et 

al., 2010; Brewin & Burgess, 2014; Smith et al., 2015; Bisby & Burgess, 2016; Kaur et al., 2016). 

Here, we investigate this spatial component of hippocampal function further and examine the 

relationships between PTSD, trauma exposure and navigation behaviour. 

 

1.1 Trauma processing in the hippocampus 

When fully functioning, the hippocampus facilitates the formation and consolidation of memories and 

this is crucial to processing traumatic experiences (Smith et al., 2015; Bisby & Burgess, 2016). The 

hippocampal memory system is declarative and provides contextual information for our memories, 

which enables us to verbalise what has happened to us and to ‘put it in context’ (Pearson et al., 2012; 

Frankland et al., 1998; Vermetten et al., 2003; Brewin & Burgess, 2014; Morris in Andersen et al., 

2007; Eichenbaum, 1997, 2000; Byrne et al., 2007; Reber et al., 1996; Glazer et al., 2013).  

 

A core component of this hippocampal-dependent contextualisation is spatial (Morris, 1981; Meyer et 

al., 2012) and is facilitated by allocentric processing (Bisby et al., 2010; Brewin & Burgess, 2014; 

Smith et al., 2015). Essentially, allocentric processing enables individuals to construct a viewer-

independent (non-egocentric) representation or image of a scene. This is useful in navigation and 

facilitates techniques such as using cardinal or compass direction points, and visualising overhead 
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map-like representations of buildings, streets and landscapes (Ekstrom et al., 2014; O’Keefe, 1990; 

Wiener et al., 2009). This hippocampal-dependent spatial processing also has clinical implications, 

particularly when contextualising past traumatic experiences. An allocentric representation of a 

traumatic scene can provide context to otherwise sensory and evocative representations of the 

trauma (Bisby et al., 2010; Brewin & Burgess, 2014; Smith et al., 2015; Bisby & Burgess, 2016; Kaur 

et al., 2016). 

 

The relationship between traumatic stress and hippocampal-dependent processing is complex. In 

cases of PTSD, hippocampal integrity is generally considered compromised, either because stress-

related atrophy or disruption (Gilbertson et al., 2007; Wang, 2010; Pitman et al., 2012; Vasterling & 

Brewin, 2005; Sapolsky, 2000; Andersen et al., 2007; Bremner & Elzinga, 2002). Traumatic memories 

are often extreme in nature and may demand greater processing resources from the hippocampus 

than ‘ordinary normative memories’ (Brewin, in Vasterling & Brewin, 2005; Van der Kolk et al., 1989).  

Furthermore, when impaired, the hippocampus’ role in consolidating new memories of safety - 

memories which could otherwise help to alleviate and minimise a stress or fear response- is 

weakened (Peters et al., 2010; Scoville & Milner 1957; Anderson et al., 2007; Le Doux, 2000; 

Notaras, et al., 2015; Maren, 2008, 2011; Rosas-Vidal et al., 2014; Takei et al., 2011). These 

dynamics culminate in a situation where hippocampal impairment may be both a contributor to, and a 

consequence of, PTSD (Gilbertson et al., 2007; Smith et al., 2015). More specifically, hippocampal-

dependent ‘allocentric’ processing is known to be affected by stress and negative emotions 

(Eichenbaum, 2000; Tempesta et al., 2011; van Gerven et al., 2016; Bisby & Burgess, 2016).  

 

1.2 Recent research into trauma and spatial processing 

This relationship between hippocampal dysfunction and trauma processing has stimulated research 

into the relationship between PTSD and allocentric processing (Bisby et al., 2010; Smith et al., 2015; 

Kaur et al., 2016). Smith et al. (2015) investigated allocentric spatial processing performance in 

trauma exposed individuals with and without clinical levels of PTSD. They found that the PTSD group 

was significantly more impaired than the non-PTSD group in two tasks involving allocentric 

processing: a topographical recognition task comprising perceptual and memory components (the 

Four Mountains task by Hartley et al., 2007); and a test of memory for objects’ locations within a 

virtual environment, within which allocentric and non-allocentric (egocentric) memory was tested (the 

Town Square task by King et al., 2004).  

 

1.3 How does trauma and PTSD affect active navigation? 

Together, the trauma processing literature and cognitive neuroscientific accounts of contemporary 

research present a coherent and valuable narrative about the implications that PTSD may have for 

hippocampal-dependent processing (Bisby et al., 2010; Tempesta et al., 2012, 2015; Smith et al., 

2015). However, to date these advances in our understanding of trauma processing have only been 

applied to clinical conditions of PTSD with little known about the implications of trauma exposure for 

hippocampal-dependent processing in healthy individuals. 
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Most people are exposed to at least one traumatic event in their lives (Ogle et al., 2013).  Trauma 

exposure prevalence rates range from 40% to 90% (Breslau et al., 2013) and these rates can be even 

higher in certain professions such as paramedics and some areas of the military (Greenberg et al., 

2015). Given that PTSD prevalence rates are estimated to be 3% (Greenberg et al., 2015; KCMHR, 

2010; Atwoli, 2015) it is safe to assume that trauma exposure without PTSD is common to a 

significant proportion of the population. It is therefore important to investigate if trauma exposure in 

itself has an impact on people’s ability to apply hippocampal resources when they are in high 

demand, such as during navigation.  

 

The existing literature propose that healthy individuals access and utilise sufficient allocentric 

resources for trauma processing as and when they are required (Brewin et al. 1996; Brewin et al., 

2010). However, the studies on which these assertions are based (e.g. Bisby et al, 2010; Gilbertson 

et al., 2007; Tempesta et al., 2012) did not compare allocentric resource allocation between healthy 

individuals with and without trauma exposure. Impairment in individuals’ navigation-related behaviour 

have featured in trauma literature, namely travel anxiety, driving behaviour and willingness to explore 

the environment (e.g. Osofsky et al., 1995; Ehring et al., 2006; Ehlers et al., 1998; Mayou et al., 2001; 

Adler et al., 2009; Handley et al., 2009; Butler et al., 1999; Beck & Coffey, 2007). While it is feasible 

that these impairments may simply result from high levels of anxiety and avoidance symptoms in 

PTSD, these behavioural problems were  not reported in the literature as being unique to clinical 

cases of PTSD. One could speculate that these impairments could also be an effect of a relationship 

between trauma exposure and navigation behaviour. 

 

The aims of this study were twofold. Firstly, to assess how clinical levels of PTSD affect allocentric 

processing in active navigation behaviour (looking at strategy use in activities such as wayfinding and 

route learning). Secondly, to determine how trauma exposure itself impacts on spatial processing and 

navigation behaviour, by comparing spatial processing and navigation behaviours between healthy 

individuals either with or without trauma exposure.  Allocentric processing was assessed using the 

memory version of the Four Mountains task (Hartley et al., 2007). We also employed a more active 

navigation task which assessed strategy use (‘navigation style’) and route learning (Wiener et al., 

2013) to assess the strategies, techniques and skills that individuals might use in everyday 

navigation. Performance on these tasks was compared between 138 participants who were trauma 

unexposed or exposed (with and without PTSD).  

2. METHODS AND MATERIALS 

2.1 Participants 

The study involved 138 participants (62 females) who were grouped according to trauma exposure:  

(i) Those with PTSD; the PTSD group (n = 47) 

(ii) Those who had been exposed to trauma previous but did not have PTSD; the Trauma Exposed 

No PTSD group (n = 58)  

(iii) Those without previous trauma; the Trauma Unexposed group (n = 33). 

 

Seventy-eight healthy controls (without PTSD) were recruited through Bournemouth University (BU) 

and these comprised staff, students, and members of the public (through the Psychology Research 
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Volunteer Scheme). Nine participants with symptoms of PTSD were recruited through the Intensive 

Psychotherapy Treatment Service (IPTS) at Dorset NHS. Twenty-four participants with trauma 

exposure were recruited from Dorset and Cambridgeshire Police forces. Twenty-five military veterans 

diagnosed with PTSD were recruited from Combat Stress’s rehabilitation programme (Ex Services 

Mental Welfare Society Registered Charity No. 206002, Surrey). Two healthy combat trauma exposed 

participants from the UK Armed Forces were recruited through British Military Fitness and Forces Fit 

military fitness programmes.  

No participants met criteria for current substance or alcohol misuse or had suffered a head injury. 

Demographic and clinical variables pertinent to hippocampal dependent spatial processing were 

recorded and these included: age (in years), gender (male or female), pain, sleep disturbance, 

depression and the taking of Selective Serotonin Reuptake Inhibitors (SSRI) anti-depressants, taking 

benzodiazepines or opiates.  

The study was approved by the BU Ethics Board; the Combat Stress Research Ethics Committee; 

and the NHS South West (Cornwall and Plymouth) National Research Ethics Committee, (reference 

number 13/SW/0041).  

2.2 Procedure 

Informed consent was obtained from all participants (n = 138). Participants were screened for trauma 

exposure via an online version of the Life Events Checklist (LEC, Blake et al., 1995). Participants who 

did not self-report trauma exposure using the LEC formed a  ‘Trauma Unexposed’ control group (n = 

33). Participants who did self-report trauma exposure using the LEC were then assessed using the 

PTSD Diagnostic Scale (PDS, Foa et al., 1995) to determine whether or not individuals were living 

with PTSD.  All participants who were recruited with pre-diagnosed clinical levels of PTSD were also 

given the PDS to determine their current level of trauma impact and symptomology for analysis. 

Individuals with scores at or above the threshold of 21 comprised  a PTSD group (n = 47). Those with 

scores below the threshold of 21 comprised a ‘Trauma Exposed’ No PTSD group (n = 58). 

Participants also completed online versions of measures of other clinical factors which were 

potentially confounding variables for either PTSD or hippocampal function. These included: 

depression using the Beck Depression Inventory (BDI, Beck et al., 1996), pain, using the standard 

Numerical Rating Scale (NRS, Jensen et al.,1986) and sleep, using the Pittsburg Sleep Quality Index 

Addendum for PTSD (PSQI-A, Germain et al., 2005). Participants were also asked if they were taking 

Selective Serotonin Reuptake Inhibitors (SSRIs), opiates or benzodiazepines. 

Participants were administered a practice trial of the Four Mountains task before the main test which 

took about 10 minutes to complete. Participants were given written instructions for the Alternative 

Route (AR) paradigm and a demonstration before the main test which took about 24 minutes to 

complete.  

2.2.1 Topographic memory (The Four Mountains Task, Hartley et al., 2007) 

The Four Mountains memory task (Hartley et al., 2007) is a match-to-sample test of short term 

memory for the topographical aspects of visual scenes, which is considered to require allocentric 

processing (Hartley et al., 2002; Hartley & Harlow, 2012; Bird et al., 2010). The memory test 

comprised an A4 paper booklet of 15 separate computer-generated landscapes (the stimuli), each 
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Fig. 2: Screen shot from the Alternative Route Paradigm (Wiener et al., 2013) with diagrams of the training route 
and test intersections. The large image on the left is a participants’ view of the route. The second image is the 
training route. The final images on the right are tests (or trials), the upper image being of a same direction trial, 
and the lower being of a different direction trial. 

Egocentric performance was measured by the percentage of trials in which intersections were 

approached from the same direction as during the learning phase (as illustrated in the top right image 

in Figure 2) which were correct. Allocentric performance was measured by the percentage of different 

direction trials which were correct (i.e., those approached from a different direction that was presented 

in the learning phase, and as illustrated in the bottom right image in Figure 2). Accuracy on egocentric 

trials and allocentric trials was calculated by block. A subset of the different direction trials (those 

which approached an intersection from a different side, but in the same order) allowed us to 

distinguish between three different navigation strategies: an egocentric ‘beacon’ strategy, an 

egocentric ‘associative cue’ strategy and an allocentric ‘configural’ strategy (Wiener et al., 2013). 

Participants used a beacon strategy when they moved towards a landmark to bring them closer to the 

goal. Participants used an associative cue strategy when they associated a directional turn with a 

certain landmark. Participants only used a configural strategy when they were able to spatially 

configure local cues to form a ‘cognitive map’ of the environment around them. The number of times 

an individual used each strategy was calculated by block (1 to 6) and as a mean overall score.  

2.4 Statistical analysis  

All statistical analyses were performed using SPSS version 22 (SPSS, IBM Corp. in Armonk, NY). 

Group comparisons using ANOVA were made between those with no self-reported trauma, those who 

reported trauma exposure without PTSD, and those with PTSD. Measures of performance comprised 

the total Four Mountains score and egocentric and allocentric performance and strategy use on the 

Alternative Route paradigm, by block and as a total overall score. Hierarchical regression analysis 

was used to assess the contribution of demographic and clinical variables to performance on the Four 

Mountains task (as was used in the study by Smith et al., 2015). Demographic and clinical factors 

were included in the analysis as covariates where there had been baseline differences (see below). 

RESULTS 

3.1 Demographic and clinical data 

Table 1 illustrates that there were significant group differences for all demographic and clinical 

variables, requiring each variable to be controlled for in subsequent analyses. The PTSD group were 

predominantly male, older, had more pain and sleep disturbance and were more likely to be taking 

SSRIs, benzodiazepines or opiates.  
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Table 1.  Means (SDs) for demographic and clinical data.  

Demographic or clinical 
factor 

Trauma 
Unexposed 

(n = 32) 

Trauma 
Exposed No 

PTSD 
(n = 58) 

PTSD 
(n = 47) 

Group comparison 

Mean age in years 
(± SD) 

32.5  
SD ±10.4 

38.9  
SD ±10.3 

38.2  
SD ± 9.6 

F (2, 135) = 4.61, p = 
0.01* 

Gender (%) 
 

Male  36.4% 46.6% 78.7% χ2= 17.0, p < .01** 
Female 63.6% 53.5% 21.3% 

Currently taking 
SSRIs (%) 

No  100% 94.1% 71.1% 
χ2 = 17.7, p < .01** 

Yes  0% 5.9% 28.9% 
Currently taking 
Benzodiazepines 
or opiates (%) 

No  100% 96.6% 72.3% 
χ2= 20.7, p < .01** 

Yes  0% 3.5% 27.7% 

Sleep Disturbance: 
Mean PSQI score (± SD) 

0.41  
SD ± 1.5 

1.02 
SD ± 2.43 

8.11  
SD ± 6.17 

F (2, 135) = 50.3, p 
<.01** 

Pain: Mean Numerical 
Rating Scale score (± SD) 

0.42  
SD ± 1.37 

0.86  
SD ± 1.94 

3.15  
SD ± 3.70 

F (2, 130) = 14.2, p < 
.01** 

PTSD: Mean PTSD 
Diagnostic Scale score (± 
SD) 

- 7.06  
SD ± 6.62 

35.3  
SD ± 9.46 F (1, 94) = 290, p <.01** 

Note: one participant did not provide full demographic data, n = 137 

3.2 Topographic memory (Four Mountains task) 

A univariate ANOVA showed a significant main effect of group (Trauma Unexposed, Trauma Exposed 

No PTSD and PTSD) on topographical memory performance, F (2, 136) 7.49, p< 0.01, �p
2 = 15.0. 

The mean Four Mountains score was 11.3 for the Trauma Unexposed group (n = 33, SD ± 2.31), 10.8 

for the Trauma Exposed No PTSD Group (n = 58, SD ± 2.47) and 9.3 for the PTSD group (n = 47, SD 

± 2.25). Post hoc tests (using Bonferroni) revealed a significant difference in performance between 

the PTSD group and both the Trauma Exposed No PTSD group, mean difference (MD) = -1.42, SD ± 

0.46, p < 0.01, and the Trauma Unexposed group, MD = -1.91, SD ± 0.54, p < 0.01. There was no 

significant difference in performance between the Trauma Exposed No PTSD and the Trauma 

Unexposed group, MD = .491, SD ± 0.52, p = 0.35. This suggests that PTSD had a significant impact 

on static topographical spatial processing but that trauma exposure alone did not. 
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suggested that allocentric (hippocampal dependent) performance changed over the duration of the 

task.  

There was a significant main effect of group, F (2, 135) = 4.23, p = 0.02, �p
2 = 0.06. Pairwise 

comparisons (with Bonferroni correction) showed that the PTSD group performed significantly 

differently (M = 0.19, SD ± 0.03) to the Trauma Unexposed group (M = 0.34, SD ± 0.04) (PTSD vs 

Trauma Unexposed, p = 0.01) but not to the Trauma Exposed No PTSD group. This suggested that 

PTSD had an impact on allocentric performance, and that performance was comparable to that of 

others with trauma exposure (without PTSD), but not to those with no experience of trauma exposure.  

There was a significant group x block interaction, F (8.29, 135) = 2.84, p = 0.01, �p
2 = 0.04), 

suggesting that group significantly affected allocentric learning in the navigation task. To explore the 

nature of this interaction between group and allocentric performance on route learning, post hoc t- 

tests were conducted.  In Figure 5 allocentric performance (%mean correct on different direction 

trials) is presented as a function of group and block. The differences between the groups were not 

significant for all blocks, but for the final block. 

In the first experimental block (Block 1), the Trauma Exposed No PTSD group did not perform 

significantly differently from the Trauma Unexposed group (p = 0.47). There were no significant 

performance differences in Block 1 between the PTSD group and the Trauma Exposed No PTSD 

group (p = 0.8), nor between the PTSD group and the Trauma Unexposed group (p = 0.37). However, 

in the last experimental block (Block 6), the Trauma Exposed No PTSD group (M = 0.35, SD ± 0.30) 

performed significantly worse than the Trauma Unexposed group (M = 0.53, SD ± 0.33) with a mean 

difference of – 0.18, p = 0.01, as did PTSD group (M = 0.24, SD ± 0.31) to the Trauma Unexposed 

group (M = 0.53, SD ± 0.34, mean difference - 0.29, p < 0.01). This suggests that when it came to 

allocentric performance outcomes in active navigation, the negative impact of trauma exposure was 

comparable to that of PTSD.  
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Mountains task, along with age. Our study introduced a sample of healthy participants who were 

unexposed to trauma (the Trauma Unexposed Group). We found that participants with PTSD were 

significantly impaired in the topographical memory test compared to this trauma unexposed group, 

and again, this was independent of any clinical or demographic variables. Performance on the 

topographical memory test did not differ between participants without PTSD but reporting trauma 

exposure and those reporting no trauma exposure (i.e. the Trauma exposed No PTSD and the 

Trauma Unexposed group).  

Participants with PTSD performed significantly worse than the healthy unexposed (Trauma 

Unexposed) and healthy trauma exposed (Trauma Exposed No PTSD) groups in terms of both 

egocentric and allocentric performance on the Alternative Route paradigm. Impairment in active 

allocentric navigation in cases of PTSD was accompanied by an associative bias in the PTSD group. 

That is, participants with PTSD applied an associative cue strategy significantly more in active 

navigation than those who were trauma exposed without PTSD (Trauma Exposed No PTSD). The 

performance of the Trauma Unexposed and Trauma Exposed No PTSD groups did not differ in 

overall egocentric and allocentric performance on the Alternative Route task, but the Trauma Exposed 

No PTSD group exhibited significantly worse allocentric route learning performance than the those in 

the Trauma Unexposed group. 

4 DISCUSSION 

4.1 PTSD, navigation impairment and associative bias 

This study showed for the first time that PTSD impairs actual active egocentric and allocentric 

navigation and this extends findings by Smith et al. (2015) which showed that PTSD impaired 

allocentric performance in object location. In this study, we also determined that the contribution of 

PTSD to allocentric and egocentric performance deficits in active navigation was unique. 

The results of this study also demonstrate for the first time an associative information processing bias 

being applied to navigation in cases of PTSD; a bias which is well-recognised in clinical trauma 

literature (Lang, 1977; Erwin, 2003; Maren, 2008, Steel et al., 2005). The associative bias in PTSD in 

this study interferes with individuals’ capacity to apply allocentric spatial processing to hippocampal 

dependent navigation tasks. This relationship between unprocessed trauma and impairment in 

allocentric spatial processing substantiates an increasing evidence base that hippocampal dependent 

trauma and spatial processing are related (Bisby et al., 2010; Brewin & Burgess, 2014; Smith et al., 

2015; Tempesta et al., 2012; Ferrara et al., 2016; Kaur et al., 2016). What is more, these findings 

raise questions as to what other areas of cognition and everyday behaviour may be affected by this 

associative bias. 

4.2 Trauma exposure in healthy individuals  

In the current study healthy trauma exposed participants exhibited poor allocentric performance on a 

virtual active navigation task. Their performance was significantly worse than those of trauma 

unexposed individuals and yet was comparable to those with PTSD. Their use of the allocentric 

strategy was also comparable to those with clinical levels of PTSD.  

Given that performance in more simple static spatial processing task did not differ between trauma 

exposed and unexposed participants, this raises the question of whether performance on simple static 
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spatial assessments may mask more serious performance deficits in active hippocampal-dependent 

navigation. 

 

Findings from this research highlight the importance of differentiating between healthy trauma 

unexposed individuals, healthy trauma exposed individuals, and individuals with PTSD when 

considering navigation performance and assessment. This will be particularly relevant to navigation 

tasks considered to be hippocampal-dependent, such as mentally constructing and then using 

‘cognitive maps’ of an environment (including floor plans, road layouts or larger terrains). These 

navigation activities may be significantly compromised by trauma exposure alone, not just PTSD. 

When trauma impact is at probable or clinical levels, navigation impairments are likely to be more 

profound, accompanied by an associative bias, and can extend to non-hippocampal dependent 

(egocentric) navigation, such as using landmarks, and learning routes using sets of directions.  

 

4.3 Theoretical considerations   

Somewhat contrary to recent studies in -and theories of- PTSD (e.g. Brewin et al., 1996; Bisby et al., 

2010, etc.) this study suggests that healthy individuals (without PTSD) who have had previous trauma 

exposure may not always be able to apply allocentric processing sufficiently in hippocampal 

dependent navigation. To understand this better, one could return to earlier theory which made 

reference to memory representations ‘competing’ with other demands on the hippocampus to access 

resources in the hippocampus which are needed to retrieve and encode them (Brewin, 2006). Dual 

Representation Theory (DRT) has since been developed (Bisby et al., 2010) and DRT identified these 

resources as being hippocampal (and allocentric) in nature. So, to apply these concepts to our study, 

a reasonable explanation for hippocampal dependent processing deficits after trauma exposure may 

be that individuals have simply ‘used up’ (or are still using up) some hippocampal resources to 

contextualise their experiences.   

 

This explanation is consistent with findings from other non-PTSD studies that have investigated the 

relationship between modulation of hippocampal resources and stress (Schwabe et al., 2008; Conrad 

et al., 2006), down-regulation of the hippocampus in response to negative emotions (Bisby & 

Burgess, 2016) and hippocampal impairment and intrusive imagery (Bisby et al., 2010; Meyer et al., 

2012). These studies demonstrated impairments in aspects of hippocampal functionality in the 

absence of current clinical levels of PTSD. Recent in vivo physiological research with rodents (Tomar 

et al., 2015) has shown that repeated stress has a dynamic impact on hippocampal dependent spatial 

processing in that while hippocampal neuronal excitability may subside over time, the capacity to 

contextualise spatial information (using the hippocampus) may continue to be compromised. 

 

4.4 Spatial processing in trauma assessment and trauma interventions 

This study has shown that hippocampal-dependent active navigation assessments (such as the 

Alternative Route paradigm) are sensitive to trauma-related performance impairments in healthy 

individuals. Such assessment tools may be particularly valuable to occupations which demand 

competence in ‘situational awareness’ under stressful conditions, such as emergency response and 

the military (MOD, 2014, 2016).  



  

16 
 

The finding in this study that trauma exposure may impair hippocampal dependent spatial processing 

may have relevance beyond navigation. Trauma literature advocates improving individuals’ 

hippocampal-dependent (allocentric) spatial processing to assist the contextualisation of trauma 

memories in therapy (Smith et al., 2015; Bisby et al. 2010; Steel, 2005; Neuner, 2008; McIsaac & 

Eich, 2004; Miller & Wiener, 2014). This has been tested with a small clinical case study in which two 

combat veterans who were trained to apply allocentric spatial processing techniques in PTSD therapy 

demonstrated decreased PTSD symptomology as a result (Kaur et al., 2016).  

Our study now presents a case for supporting healthy individuals (i.e. those without probable or 

clinical levels of PTSD) in the active processing of their experiences to minimise the negative impact 

that trauma may have on their cognition and behaviour. Applying hippocampal dependent (allocentric) 

spatial processing techniques may well complement existing trauma intervention occupational 

practices well, such as Trauma Risk Management (TRiM, Greenberg et al., 2015). What is more, 

recent findings of this study and others (e.g. Smith et al., 2015; Kaur et al., 2016, etc) suggest that 

applying these techniques might not only help to maximise hippocampal functionality in navigation in 

healthy individuals but may also increase their resilience to the longer term impact of unprocessed 

trauma.  

5 Limitations 

It is important to acknowledge that the sampling strategy of this study may have introduced bias. 

When recruiting individuals who self-report trauma exposure or PTSD the range of potential 

environmental conditions of that trauma are not controlled for- and they may be extensive, including 

the timing, nature and duration of exposure and previous access to treatment (e.g. Breslau et al., 

2012; Brewin et al., 2000). A further consideration is the demographic profile of the veteran PTSD 

population, about whom much research has revealed influential environmental factors including 

childhood adversity, the specific nature of combat exposure, and more restricted access to trauma 

processing interventions during active service (Bremner et al., 1993; Mac Manus et al., 2014). The 

homogeneity or diversity of military and civilian populations has been shown to be of critical value to 

PTSD research (Zhang et al., 2014) and is something which should not be overlooked.  

CONCLUSION  

The findings from this highlight the importance of detecting potentially dynamic trauma-related 

impairment in healthy individuals and reveals that PTSD-related associative bias may affect other 

areas of cognition and behaviour.  A final suggestion is that future neuropsychological research 

considers other influences over hippocampal integrity which may influence how resources are 

accessed for spatial processing under traumatic conditions, such as genetically determined activity-

dependent plasticity (see: Miller & Wiener, 2014; Zhang et al., 2014; Lovden et al., 2012; Banner et 

al., 2012). Further research to better understand the complex nature of trauma resilience remains 

valuable in a modern world which faces increasingly new challenges and threats to our sense of 

safety and of our right to protect it.   
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Highlights 

• PTSD brings an ‘associative bias’ to active navigation behaviour 

• PTSD impairs spatial processing and both egocentric and allocentric navigation  
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• Trauma exposure in healthy participants without PTSD impairs active allocentric navigation 

• Findings have clear implications for trauma processing interventions  

• Findings have clear implications for navigation performance assessment  

 


