8,114 research outputs found

    To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.

    Get PDF
    Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness

    Lensed CMB power spectra from all-sky correlation functions

    Full text link
    Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed power spectra using a low-order perturbative expansion are not good enough for percent-level accuracy. Non-perturbative flat-sky methods are more accurate, but curvature effects change the spectra at the 0.3-1% level. We describe a new, accurate and fast, full-sky correlation-function method for computing the lensing effect on CMB power spectra to better than 0.1% at l<2500 (within the approximation that the lensing potential is linear and Gaussian). We also discuss the effect of non-linear evolution of the gravitational potential on the lensed power spectra. Our fast numerical code is publicly available.Comment: 16 pages, 4 figures. Changes to match PRD version including new section on non-linear corrections. CAMB code available at http://camb.info

    The Birth and Growth of Neutralino Haloes

    Full text link
    We use the Extended-Press-Schechter (EPS) formalism to study halo assembly histories in a standard Λ\LambdaCDM cosmology. A large ensemble of Monte Carlo random walks provides the {\it entire} halo membership histories of a representative set of dark matter particles, which we assume to be neutralinos. The first generation halos of most particles do not have a mass similar to the free-streaming cut-off Mf.s.M_{f.s.} of the neutralino power spectrum, nor do they form at high redshift. Median values are M1=105M_1 = 10^5 to 107Mf.s.10^7M_{f.s.} and z1=13z_1 = 13 to 8 depending on the form of the collapse barrier assumed in the EPS model. For almost a third of all particles the first generation halo has M1>109Mf.s.M_1>10^9M_{f.s.}. At redshifts beyond 20, most neutralinos are not yet part of any halo but are still diffuse. These numbers apply with little modification to the neutralinos which are today part of halos similar to that of the Milky Way. Up to 10% of the particles in such halos were never part of a smaller object; the typical particle has undergone ∼5\sim 5 "accretion events' where the halo it was part of falls into a more massive object. Available N-body simulations agree well with the EPS predictions for an "ellipsoidal" collapse barrier, so these may provide a reliable extension of simulation results to smaller scales. The late formation times and large masses of the first generation halos of most neutralinos imply that they will be disrupted with high efficiency during halo assembly.Comment: 7 pages, 7 figure

    An evaluation of the performance of the Dynamiker® Fungus (1-3)-β-D-Glucan Assay to 2 assist in the diagnosis of Pneumocystis pneumonia

    Get PDF
    Invasive fungal disease (IFD) can be caused by a range of pathogens. Conventional diagnosis has the capacity to detect most causes of IFD, but poor performance limits impact. The introduction of non-culture diagnostics, including the detection of (1-3)-β-D-Glucan (BDG), has shown promising performance for the detection of IFD in variety of clinical settings. Recently, the Dynamiker® Fungus (1-3)-β-D-Glucan assay (D-BDG) was released as an IFD diagnostic test. This article describes an evaluation of the D-BDG assay for the diagnosis of invasive aspergillosis (IA), invasive candidiasis (IC) and Pneumocystis pneumonia (PCP) across several high-risk patient cohorts and provides comparative data with the Associates of Cape Cod Fungitell® and BioRad Platelia™ Aspergillus Ag (GM) assays. There were 163 serum samples from 121 patients tested, from 21 probable IA cases, 28 proven IC cases, six probable PCP cases, one probable IFD case, 14 possible IFD cases and 64 control patients. For proven/probable IFD the mean BDG concentration was 209pg/ml, significantly greater than the control population (73pg/ml; P: <.0001). The sensitivity, specificity, and diagnostic odds ratio for proven/probable IFD was 81.4%, 78.1%, and 15.5, respectively. Significant BDG false positivity (9/13) was associated post abdominal surgery. D-BDG showed fair and good agreement with the Fungitell®, and GM assays, respectively. In conclusion, the D-BDG provides a useful adjunct test to aid the diagnosis of IFD, with technical flexibility that will assist laboratories processing low sample numbers. Further, large scale, prospective evaluation is required to confirm the clinical validity and determine clinical utility

    Strangers in the night: Discovery of a dwarf spheroidal galaxy on its first Local Group infall

    Full text link
    We present spectroscopic observations of the AndXII dwarf spheroidal galaxy using DEIMOS/Keck-II, showing it to be moving rapidly through the Local Group (-556 km/s heliocentric velocity, -281 km/s relative to Andromeda from the MW), falling into the Local Group from ~115 kpc beyond Andromeda's nucleus. AndXII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time, and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H{I} gas mass of <3000 Msun suggests that AndXII's gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest the dwarf is close to the escape velocity of M31 for published mass models. AndXII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.Comment: 4 pages 5 figures 1 table, accepted in ApJ, july issu

    Spatial Curvature Falsifies Eternal Inflation

    Full text link
    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10^-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature \Omega_k. On this basis we argue that a measurement of |\Omega_k| > 10^-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of \Omega_k < -10^-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of \Omega_k measurements and constitute a sharp test of these predictions.Comment: 16+2 pages, 2 figure

    Defective antifungal immunity in patients with COVID-19

    Get PDF
    The COVID-19 pandemic has placed a huge strain on global healthcare and been a significant cause of increased morbidity and mortality, particularly in atrisk populations. This disease attacks the respiratory systems and causes significant immune dysregulation in affected patients creating a perfect opportunity for the development of invasive fungal disease (IFD). COVID-19 infection can instill a significant, poorly regulated pro-inflammatory response. Clinically induced immunosuppression or pro-inflammatory damage to mucosa facilitate the development of IFD and Aspergillus, Mucorales, and Candida infections have been regularly reported throughout the COVID-19 pandemic. Corticosteroids and immune modulators are used in the treatment of COVID-19. Corticosteroid use is also a risk factor for IFD, but not the only reason for IFD in COVID -19 patients. Specific dysregulation of the immune system through functional exhaustion of Natural killer (NK) cells and T cells has been observed in COVID-19 through the expression of the exhaustion markers NK-G2A and PD-1. Reduced fungicidal activity of neutrophils from COVID-19 patients indicates that immune dysfunction/imbalance are important risk factors for IFD. The COVID-19 pandemic has significantly increased the at risk population for IFD. Even if the incidence of IFD is relatively low, the size of this new at-risk population will result in a substantial increase in the overall, annual number of IFD cases. It is important to understand how and why certain patients with COVID-19 developed increased susceptibility to IFD, as this will improve our understanding of risk of IFD in the face of future pandemics but also in a clinical era of increased clinical immuno-suppression/modulation

    Cytoskeletal Changes During Adhesion and Release: A Comparison of Human and Nonhuman Primate Platelets

    Get PDF
    The organization of cytoskeletal proteins in whole-mount adherent platelets from African green monkeys and normal human volunteers has been studied by SEM, high vacuum electron microscopy (HVEM) and conventional (120 kV) electron microscopy. We describe three distinct organizational zones, the Central Matrix, the Trabecular Zone and the Peripheral Web in spread platelets from both sources. The Central Matrix is an ill-defined superstructure of 80-100 Ã… filaments of short length which enshrouded the granules, dense bodies, mitochondria and elements of the open-channel and dense-tubular systems. The latter, identified through the use of peroxidase cytochemistry with the whole mounts, is an anastomosing network of elongate saccules having diameters of 600-1200 Ã…. The Trabecular Zone, which encircles the Central Matrix, contains 165, 80-100 and 30-50 Ã… filaments in an open lattice of irregular lattice spacing. The outermost region of the cells, the Peripheral Web, is comprised of 70 Ã… filaments organized in a honeycomb lattice with center to center spacing in the range 150-300 Ã…. This pattern for the spread cells is not consistently observed in cells during the early stages of adhesion; therefore, correlations of SEM and TEM observations are made for the various stages of adhesion/activation

    A kinematically selected, metal-poor stellar halo in the outskirts of M31

    Get PDF
    We present evidence for a metal-poor, [Fe/H]∼−1.4\sim-1.4 σ\sigma=0.2 dex, stellar halo component detectable at radii from 10 kpc to 70 kpc, in our nearest giant spiral neighbor, the Andromeda galaxy. This metal-poor sample underlies the recently-discovered extended rotating component, and has no detected metallicity gradient. This discovery uses a large sample of 9861 radial velocities of Red Giant Branch (RGB) stars obtained with the Keck-II telescope and DEIMOS spectrograph, with 827 stars with robust radial velocity measurements isolated kinematically to lie in the halo component primarily by windowing out the extended rotating component which dominates the photometric profile of Andromeda out to <<50 kpc (de-projected). The stars lie in 54 spectroscopic fields spread over an 8 square degree region, and are expected to fairly sample the halo to a radius of ∼\sim70 kpc. The halo sample shows no significant evidence for rotation. Fitting a simple model in which the velocity dispersion of the component decreases with radius, we find a central velocity dispersion of 152\kms decreasing by -0.90\kms/\kpc. By fitting a cosmologically-motivated NFW halo model to the halo stars we constrain the virial mass of M31 to be greater than 9.0 \times 10^{11} \msun with 99% confidence. The properties of this halo component are very similar to that found in our Milky Way, revealing that these roughly equal mass galaxies may have led similar accretion and evolutionary paths in the early Universe.Comment: 13 pages, 12 figures, accepted in ApJ. substantially revised versio

    Influence of temperature on adhesion coefficient and bonding strength of leaf films: a twin disc study

    Get PDF
    In the autumn, train operations in the UK are likely to be unstable due to the low adhesion coefficient between the wheel and rail, and fallen leaves on the line have been known as the main cause of this problem. In this study, the temperature effects on the adhesion coefficient as well as the bonding strength of the leaf film were investigated using a twin disc machine, to develop a potential prevention and mitigation method. The high surface temperature of the disc seemed to improve the adhesion when the leaf powder suspension was present, forming a linear relationship between the surface temperature. The surface temperature around 240 °C could be enough to attain the required level of traction. The high temperature could decrease the bonding energy between the leaf film and rail, possibly decelerating the chemical reaction for the leaf film formation. Continuous drag braking in the autumn was proposed as a countermeasure. Two effects can be expected for this method: prevention of leaf contamination by removing the leaf residue on the wheel surface and improvement of the adhesion level by braking heat
    • …
    corecore