1,005 research outputs found

    On the origin of the difference between time and space

    Full text link
    We suggest that the difference between time and space is due to spontaneous symmetry breaking. In a theory with spinors the signature of the metric is related to the signature of the Lorentz-group. We discuss a higher symmetry that contains pseudo-orthogonal groups with arbitrary signature as subgroups. The fundamental asymmetry between time and space arises then as a property of the ground state rather than being put into the formulation of the theory a priori. We show how the complex structure of quantum field theory as well as gravitational field equations arise from spinor gravity - a fundamental spinor theory without a metric.Comment: 4 page

    Coupled dark energy and dark matter from dilatation anomaly

    Full text link
    Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless scalar field - the geon. At finite time, small time-dependent masses for both the cosmon and geon are still present due to imperfect dilatation symmetry. For a sufficiently large mass the geon will start oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common origin of the mass of both fields leads to an effective interaction between dark matter and dark energy. Realistic cosmologies are possible for a simple form of the effective cosmon-geon-potential. We find an inverse geon mass of a size where it could reduce subgalactic structure formation.Comment: 4 pages, 2 figure

    Equation of state near the endpoint of the critical line

    Full text link
    We discuss first order transitions for systems in the Ising universality class. The critical long distance physics near the endpoint of the critical line is explicitly connected to microscopic properties of a given system. Information about the short distance physics can therefore be extracted from the precise location of the endpoint and non-universal amplitudes. Our method is based on non-perturbative flow equations and yields directly the universal features of the equation of state, without additional theoretical assumptions of scaling or resummations of perturbative series. The universal results compare well with other methods.Comment: LaTeX, 22 pages with 7 figures, uses epsf.sty and rotate.st

    Spinor gravity and diffeomorphism invariance on the lattice

    Full text link
    The key ingredient for lattice regularized quantum gravity is diffeomorphism symmetry. We formulate a lattice functional integral for quantum gravity in terms of fermions. This allows for a diffeomorphism invariant functional measure and avoids problems of boundedness of the action. We discuss the concept of lattice diffeomorphism invariance. This is realized if the action does not depend on the positioning of abstract lattice points on a continuous manifold. Our formulation of lattice spinor gravity also realizes local Lorentz symmetry. Furthermore, the Lorentz transformations are generalized such that the functional integral describes simultaneously euclidean and Minkowski signature. The difference between space and time arises as a dynamical effect due to the expectation value of a collective metric field. The quantum effective action for the metric is diffeomorphism invariant. Realistic gravity can be obtained if this effective action admits a derivative expansion for long wavelengths.Comment: 13 pages, proceedings 6th Aegean Summer School, Naxos 201

    Two loop results from one loop computations and non perturbative solutions of exact evolution equations

    Full text link
    A nonperturbative method is proposed for the approximative solution of the exact evolution equation which describes the scale dependence of the effective average action. It consists of a combination of exact evolution equations for independent couplings with renormalization group improved one loop expressions of secondary couplings. Our method is illustrated by an example: We compute the beta-function of the quartic coupling lambda of an O(N) symmetric scalar field theory to order lambda^3 as well as the anomalous dimension to order lambda^2 using only one loop expressions and find agreement with the two loop perturbation theory. We also treat the case of very strong coupling and confirm the existence of a "triviality bound".Comment: 32 pages, HD-THEP-94-3, replaced because: lines too long, blank line

    Exact flow equation for composite operators

    Full text link
    We propose an exact flow equation for composite operators and their correlation functions. This can be used for a scale-dependent partial bosonization or "flowing bosonization" of fermionic interactions, or for an effective change of degrees of freedom in dependence on the momentum scale. The flow keeps track of the scale dependent relation between effective composite fields and corresponding composite operators in terms of the fundamental fields.Comment: 7 pages, 1 figure, minor changes, published versio

    Can Structure Formation Influence the Cosmological Evolution?

    Get PDF
    The backreaction of structure formation influences the cosmological evolution equation for the homogenous and isotropic average metric. In a cold dark matter universe this effect leads only to small corrections unless a substantial fraction of matter is located in regions where strong gravitational fields evolve in time. A``cosmic virial theorem'' states that the sum of gravitational and matter pressure vanishes and therefore relates the average kinetic energy to a suitable average of the Newtonian potential. In presence of a scalar ``cosmon'' field mediating quintessence, however, cosmology could be modified if local cosmon fluctuations grow large. We speculate that this may trigger the accelerated expansion of the universe after the formation of structure.Comment: new "cosmic virial theorem",new references,LaTex,11 page
    • …
    corecore