210 research outputs found

    Voltage Control of Exchange Coupling in Phosphorus Doped Silicon

    Full text link
    Motivated by applications to quantum computer architectures we study the change in the exchange interaction between neighbouring phosphorus donor electrons in silicon due to the application of voltage biases to surface control electrodes. These voltage biases create electro-static fields within the crystal substrate, perturbing the states of the donor electrons and thus altering the strength of the exchange interaction between them. We find that control gates of this kind can be used to either enhance, or reduce the strength of the interaction, by an amount that depends both on the magnitude and orientation of the donor separation.Comment: 5 Pages, 5 Figure

    Robust CNOT gates from almost any interaction

    Get PDF
    There are many cases where the interaction between two qubits is not precisely known, but single qubit operations are available. In this paper we show how, regardless of an incomplete knowledge of the strength or form of the interaction between two qubits, it is often possible to construct a CNOT gate which has arbitrarily high fidelity. In particular, we show that oscillations in the strength of the exchange interaction in solid state Si and Ge structures are correctable.Comment: 5 pages, 2 figure

    The engagement of further and higher education with the London 2012 Olympic and Paralympic Games II

    Get PDF
    The second report from a survey of Podium's stakeholders, assessing the Engagement of Further and Higher Education with the London 2012 Olympic and Paralympic Games

    Cross-talk compensation of hyperfine control in donor qubit architectures

    Full text link
    We theoretically investigate cross-talk in hyperfine gate control of donor-qubit quantum computer architectures, in particular the Kane proposal. By numerically solving the Poisson and Schr\"{o}dinger equations for the gated donor system, we calculate the change in hyperfine coupling and thus the error in spin-rotation for the donor nuclear-electron spin system, as the gate-donor distance is varied. We thus determine the effect of cross-talk - the inadvertent effect on non-target neighbouring qubits - which occurs due to closeness of the control gates (20-30nm). The use of compensation protocols is investigated, whereby the extent of crosstalk is limited by the application of compensation bias to a series of gates. In light of these factors the architectural implications are then considered.Comment: 15 pages, 22 figures, submitted to Nanotechnolog

    Effects of J-gate potential and interfaces on donor exchange coupling in the Kane quantum computer architecture

    Full text link
    We calculate the electron exchange coupling for a phosphorus donor pair in silicon perturbed by a J-gate potential and the boundary effects of the silicon host geometry. In addition to the electron-electron exchange interaction we also calculate the contact hyperfine interaction between the donor nucleus and electron as a function of the varying experimental conditions. Donor separation, depth of the P nuclei below the silicon oxide layer and J-gate voltage become decisive factors in determining the strength of both the exchange coupling and the hyperfine interaction - both crucial components for qubit operations in the Kane quantum computer. These calculations were performed using an anisotropic effective-mass Hamiltonian approach. The behaviour of the donor exchange coupling as a function of the device parameters varied provides relevant information for the experimental design of these devices.Comment: 15 pages, 15 figures. Accepted for Journal of Physics: Condensed Matte

    A theoretical investigation into the microwave spectroscopy of a phosphorus-donor charge-qubit in silicon: Coherent control in the Si:P quantum computer architecture

    Full text link
    We present a theoretical analysis of a microwave spectroscopy experiment on a charge qubit defined by a P2+_2^+ donor pair in silicon, for which we calculate Hamiltonian parameters using the effective-mass theory of shallow donors. We solve the master equation of the driven system in a dissipative environment to predict experimental outcomes. We describe how to calculate physical parameters of the system from such experimental results, including the dephasing time, T2T_2, and the ratio of the resonant Rabi frequency to the relaxation rate. Finally we calculate probability distributions for experimentally relevant system parameters for a particular fabrication regime

    The engagement of further and higher education with the London 2012 Olympic and Paralympic Games

    Get PDF
    Podium commissioned the Centre for Sport, Physical Education & Activity Research (SPEAR) at Canterbury Christ Church University to carry out research to capture the engagement of the further and higher education sectors and related stakeholders with the past, current and future opportunities presented by the London 2012 Olympic and Paralympic Games. The full report was released on 15 March 2011 to mark 500 days to go until the start of London 2012

    A precise CNOT gate in the presence of large fabrication induced variations of the exchange interaction strength

    Get PDF
    We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a Heisenberg Hamiltonian. This method easily applies to a general two-qubit Hamiltonian. We show how the robust CNOT gate can achieve a very high fidelity when a single application of the composite rotations is combined with a modest level of Hamiltonian characterisation. Operating the robust CNOT gate in a suitably characterised system means concatenation of the composite pulse is unnecessary, hence reducing operation time, and ensuring the gate operates below the threshold required for fault-tolerant quantum computation.Comment: 9 pages, 8 figure

    Phonon-induced decoherence and dissipation in donor-based charge qubits

    Full text link
    We investigate the phonon-induced decoherence and dissipation in a donor-based charge quantum bit realized by the orbital states of an electron shared by two dopant ions which are implanted in a silicon host crystal. The dopant ions are taken from the group-V elements Bi, As, P, Sb. The excess electron is coupled to deformation potential acoustic phonons which dominate in the Si host. The particular geometry tailors a non-monotonous frequency distribution of the phonon modes. We determine the exact qubit dynamics under the influence of the phonons by employing the numerically exact quasi-adiabatic propagator path integral scheme thereby taking into account all bath-induced correlations. In particular, we have improved the scheme by completely eliminating the Trotter discretization error by a Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-Markov approximation we find that the latter yields appropriate estimates for the decoherence and relaxation rates. However, noticeable quantitative corrections due to non-Markovian contributions appear.Comment: 8 pages, 8 figures, published online in Eur.Phys.J.B, article in press; the original publication is avaiable at www.eurphysj.or
    • …
    corecore