4,722 research outputs found
Turing's three philosophical lessons and the philosophy of information
In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe
Epitaxial graphene on SiC(0001): More than just honeycombs
The potential of graphene to impact the development of the next generation of
electronics has renewed interest in its growth and structure. The
graphitization of hexagonal SiC surfaces provides a viable alternative for the
synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now
possible. Despite this recent progress, the exact nature of the graphene-SiC
interface and whether the graphene even has a semiconducting gap remain
controversial. Using scanning tunneling microscopy with functionalized tips and
density functional theory calculations, here we show that the interface is a
warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon
complexes periodically inserted into the honeycomb lattice. These defects
relieve the strain between the graphene layer and the SiC substrate, while
still retaining the three-fold coordination for each carbon atom. Moreover,
these defects break the six-fold symmetry of the honeycomb, thereby naturally
inducing a gap: the calculated band structure of the interface is
semiconducting and there are two localized states near K below the Fermi level,
explaining the photoemission and carbon core-level data. Nonlinear dispersion
and a 33 meV gap are found at the Dirac point for the next layer of graphene,
providing insights into the debate over the origin of the gap in epitaxial
graphene on SiC(0001). These results indicate that the interface of the
epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively
impacts the physical and electronic properties of the subsequent graphene
layers
Rebuild of a layer-1 HADES drift chamber, enhancement through a high precision planar fibre-composite milling facility
Photon pressure induced test mass deformation in gravitational-wave detectors
A widely used assumption within the gravitational-wave community has so far
been that a test mass acts like a rigid body for frequencies in the detection
band, i.e. for frequencies far below the first internal resonance. In this
article we demonstrate that localized forces, applied for example by a photon
pressure actuator, can result in a non-negligible elastic deformation of the
test masses. For a photon pressure actuator setup used in the gravitational
wave detector GEO600 we measured that this effect modifies the standard
response function by 10% at 1 kHz and about 100% at 2.5 kHz
Magnetic and electronic structures of superconducting RuSrGdCuO
The coexistence of ferromagnetism and superconductivity in
RuSrGdCuO was reported both from experiments (by Tallon et. al.)
and first-principles calculations (by Pickett et. al.). Here we report that our
first-principles full-potential linearized augmented plane wave (FLAPW)
calculations, employing the precise crystal structure with structural
distortions (i.e., RuO rotations) determined by neutron diffraction,
demonstrate that antiferromagnetic ordering of the Ru moments is energetically
favored over the previously proposed ferromagnetic ordering. Our results are
consistent with recently performed magnetic neutron diffraction experiments
(Lynn et. al). Ru states, which are responsible for the magnetism,
have only a very small interaction with Cu states, which results in a
small exchange splitting of these states. The Fermi surface, characterized by
strongly hybridized orbitals, has nesting features similar to those
in the two-dimensional high cuprate superconductors.Comment: 6 pages,6 figures, accepted for publication in Phys. Rev.
Electric fields and valence band offsets at strained [111] heterojunctions
[111] ordered common atom strained layer superlattices (in particular the
common anion GaSb/InSb system and the common cation InAs/InSb system) are
investigated using the ab initio full potential linearized augmented plane wave
(FLAPW) method. We have focused our attention on the potential line-up at the
two sides of the homopolar isovalent heterojunctions considered, and in
particular on its dependence on the strain conditions and on the strain induced
electric fields. We propose a procedure to locate the interface plane where the
band alignment could be evaluated; furthermore, we suggest that the
polarization charges, due to piezoelectric effects, are approximately confined
to a narrow region close to the interface and do not affect the potential
discontinuity. We find that the interface contribution to the valence band
offset is substantially unaffected by strain conditions, whereas the total band
line-up is highly tunable, as a function of the strain conditions. Finally, we
compare our results with those obtained for [001] heterojunctions.Comment: 18 pages, Latex-file, to appear in Phys.Rev.
Electronic and structural properties of superconducting MgB, CaSi and related compounds
We report a detailed study of the electronic and structural properties of the
39K superconductor \mgbtwo and of several related systems of the same family,
namely \mgalbtwo, \bebtwo, \casitwo and \cabesi. Our calculations, which
include zone-center phonon frequencies and transport properties, are performed
within the local density approximation to the density functional theory, using
the full-potential linearized augmented plane wave (FLAPW) and the
norm-conserving pseudopotential methods. Our results indicate essentially
three-dimensional properties for these compounds; however, strongly
two-dimensional -bonding bands contribute significantly at the Fermi
level. Similarities and differences between \mgbtwo and \bebtwo (whose
superconducting properties have not been yet investigated) are analyzed in
detail. Our calculations for \mgalbtwo show that metal substitution cannot be
fully described in a rigid band model. \casitwo is studied as a function of
pressure, and Be substitution in the Si planes leads to a stable compound
similar in many aspects to diborides.Comment: Revised version, Phys.Rev.B in pres
- …
