5,183 research outputs found
VADA: A transformation-based system for variable dependence analysis
Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented
Numerical Investigation of Light Scattering off Split-Ring Resonators
Recently, split ring-resonators (SRR's) have been realized experimentally in
the near infrared (NIR) and optical regime. In this contribution we numerically
investigate light propagation through an array of metallic SRR's in the NIR and
optical regime and compare our results to experimental results.
We find numerical solutions to the time-harmonic Maxwell's equations by using
advanced finite-element-methods (FEM). The geometry of the problem is
discretized with unstructured tetrahedral meshes. Higher order, vectorial
elements (edge elements) are used as ansatz functions. Transparent boundary
conditions and periodic boundary conditions are implemented, which allow to
treat light scattering problems off periodic structures.
This simulation tool enables us to obtain transmission and reflection spectra
of plane waves which are incident onto the SRR array under arbitrary angles of
incidence, with arbitrary polarization, and with arbitrary
wavelength-dependencies of the permittivity tensor. We compare the computed
spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better
resolution
Chiral particle separation by a non-chiral micro-lattice
We conceived a model experiment for a continuous separation strategy of
chiral molecules (enantiomers) without the need of any chiral selector
structure or derivatization agents: Micro-particles that only differ by their
chirality are shown to migrate along different directions when driven by a
steady fluid flow through a square lattice of cylindrical posts. In accordance
with our numerical predictions, the transport directions of the enantiomers
depend very sensitively on the orientation of the lattice relatively to the
fluid flow
Twisted split-ring-resonator photonic metamaterial with huge optical activity
Coupled split-ring-resonator metamaterials have previously been shown to
exhibit large coupling effects, which are a prerequisite for obtaining large
effective optical activity. By a suitable lateral arrangement of these building
blocks, we completely eliminate linear birefringence and obtain pure optical
activity and connected circular optical dichroism. Experiments at around
100-THz frequency and corresponding modeling are in good agreement. Rotation
angles of about 30 degrees for 205nm sample thickness are derived.Comment: 6 pages, 4 figure
Anti-microbial Use in Animals: How to Assess the Trade-offs
Antimicrobials are widely used in preventive and curative medicine in animals. Benefits from curative use are clear – it allows sick animals to be healthy with a gain in human welfare. The case for preventive use of antimicrobials is less clear cut with debates on the value of antimicrobials as growth promoters in the intensive livestock industries. The possible benefits from the use of antimicrobials need to be balanced against their cost and the increased risk of emergence of resistance due to their use in animals. The study examines the importance of animals in society and how the role and management of animals is changing including the use of antimicrobials. It proposes an economic framework to assess the trade-offs of anti-microbial use and examines the current level of data collection and analysis of these trade-offs. An exploratory review identifies a number of weaknesses. Rarely are we consistent in the frameworks applied to the economic assessment anti-microbial use in animals, which may well be due to gaps in data or the prejudices of the analysts. There is a need for more careful data collection that would allow information on (i) which species and production systems antimicrobials are used in, (ii) what active substance of antimicrobials and the application method and (iii) what dosage rates. The species need to include companion animals as well as the farmed animals as it is still not known how important direct versus indirect spread of resistance to humans is. In addition, research is needed on pricing antimicrobials used in animals to ensure that prices reflect production and marketing costs, the fixed costs of anti-microbial development and the externalities of resistance emergence. Overall, much work is needed to provide greater guidance to policy, and such work should be informed by rigorous data collection and analysis systems
Identifying gaps between science and practitioners perspectives on land use: the case of managed realignment in the German Baltic coast
Through state-of-the art ecosystem modelling supported by ecological
experimental data, the COMTESS Project (funding: German Federal Ministry of
Education and Research) investigates potential synergies and trade offs in
ecosystem service provision under different land-use scenarios in two German
coastal areas till 2100. Overall goal is to explore alternative sustainable
land-use strategies to best adapt to climate change. Two science-based land-
use scenarios were developed for two study regions on the Baltic and North Sea
coasts to contrast a business-as-usual scenario. We focus here on the Baltic
Se case region. The underlying premise of these alternatives is managed
realignment of current dikes inland for: 1) climate mitigation through wetland
re-naturation or 2) multiple land use, including biomass harvesting for
energetic purposes (Baltic Sea). Managed realignment is increasingly
considered as a valid coastal defence strategy to lower long-term costs of
hard coastal defence and restore critical coastal and experiments have been
initiated since the 1990s in a number of northwest European countries. Though
politically highly controversial and facing much public antagonism, managed
realignment is effectively embedded in the current coastal management policy
of the state of Mecklenburg Vorpommern on the German Baltic coast.
Implementation, nevertheless, faces many obstacles. Project-based scenarios
for the Baltic Sea were first evaluated by key regional and local policy,
management and land use practitioners, each expert in their field of activity.
Their evaluation and recommendations were subsequently used to develop a
fourth land-use scenario. Using qualitative empirical social research methods
we analyse divergences and convergences between expert views on the projects
scenarios. We argue that managed realignment is currently being mainstreamed
in science, policy and resource management arenas although representatives of
local land users and inhabitants do not endorse this strategy and still foster
a hard defence approach to coastal zone management. This is best illustrated
in recurrent social mobilisation and resistance to managed realignment
proposals. This points at important perception and preference gaps between
science, policy and land users / inhabitants, which need to be resolved to
formulate and implement sustainable and socially acceptable land use
strategies
Magnetic polarons and magnetoresistance in EuB6
EuB6 is a low carrier density ferromagnet which exhibits large
magnetoresistance, positive or negative depending on temperature. The formation
of magnetic polarons just above the magnetic critical temperature has been
suggested by spin-flip Raman scattering experiments. We find that the fact that
EuB6 is a semimetal has to be taken into account to explain its electronic
properties, including magnetic polarons and magnetoresistance.Comment: 6 pages, 1 figur
Spin-polaron model: transport properties of EuB
To understand anomalous transport properties of EuB, we have studied the
spin-polaron Hamiltonian incorporating the electron-phonon interaction.
Assuming a strong exchange interaction between the carriers and the localized
spins, the electrical conductivity is calculated. The temperature and magnetic
field dependence of the resistivity of EuB are well explained. At low
temperature, magnons dominate the conduction process, whereas the lattice
contribution becomes significant at very high temperature due to the scattering
with the phonons. Large negative magnetoresistance near the ferromagnetic
transition is also reproduced as observed in EuB.Comment: 4 pages, 3 figures, accepted in Phys. Rev.
Negative-index bi-anisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation
We present the blueprint for a novel negative-index metamaterial. This
structure is fabricated via three-dimensional two-photon direct laser writing
and silver shadow evaporation. The comparison of measured linear optical
spectra with theory shows good agreement and reveals a negative real part of
the refractive index at around 3.85 micrometer wavelength - despite the fact
that the metamaterial structure is bi-anisotropic due to the lack of inversion
symmetry along its surface normal.Comment: 8 pages, 3 figure
Numerical calculations of effective elastic properties of two cellular structures
Young's moduli of regular two-dimensional truss-like and eye-shape-like
structures are simulated by using the finite element method. The structures are
the idealizations of soft polymeric materials used in the electret
applications. In the simulations size of the representative smallest units are
varied, which changes the dimensions of the cell-walls in the structures. A
power-law expression with a quadratic as the exponential term is proposed for
the effective Young's moduli of the systems as a function of the solid volume
fraction. The data is divided into three regions with respect to the volume
fraction; low, intermediate and high concentrations. The parameters of the
proposed power-law expression in each region are later represented as a
function of the structural parameters, unit-cell dimensions. The presented
expression can be used to predict structure/property relationship in materials
with similar cellular structures. It is observed that the structures with
volume fractions of solid higher than 0.15 exhibit the importance of the
cell-wall thickness contribution in the elastic properties. The cell-wall
thickness is the most significant factor to predict the effective Young's
modulus of regular cellular structures at high volume fractions of solid. At
lower concentrations of solid, eye-like structure yields lower Young's modulus
than the truss-like structure with the similar anisotropy. Comparison of the
numerical results with those of experimental data of poly(propylene) show good
aggreement regarding the influence of cell-wall thickness on elastic properties
of thin cellular films.Comment: 7 figures and 2 table
- …
