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Abstract

Variable dependence is an analysis problem in which
the aim is to determine the set of input variables that can
affect the values stored in a chosen set of intermediate
program variables.

This paper shows the relationship between the vari-
able dependence analysis problem and slicing and de-
scribes VADA, a system that implements variable depen-
dence analysis.

In order to cover the full range of C constructs and
features, a transformation to a core language is em-
ployed. Thus, the full analysis is required only for the
core language, which is relatively simple. This reduces
the overall effort required for dependency analysis. The
transformations used need preserve only the variable de-
pendence relation, and therefore need not be meaning
preserving in the traditional sense. The paper describes
how this relaxed meaning further simplifies the transfor-
mation phase of the approach. Finally, the results of an
empirical study into the performance of the system are
presented.

1 Introduction

VADA is a system for variable dependence analy-
sis. The system is designed to augment the DAIMLER-
CHRYSLER Evolutionary Testing System [42]. The vari-
able dependence problem is that of determining the set
of variables V 0 at point n0 in a program that can affect
the values of a selected set of variable V at point n. The
pair (V; n) is referred to as the dependence criterion, or
simply, the ‘criterion’.

For example consider the code fragment in Figure 1.
This figure depicts a simple program with a single

while(a>1)
f c=c-1;

b=b+1;
x=x+y+b;
y=y+z;
p=p+1;
z=z+1; g

Figure 1. Variable Dependence Example

while loop. In this example, the variable x at the end of
the program depends upon the initial values of the vari-
able set fz;y;b;a;xg. The example indicates the way in
which variable dependence can be loop carried (the de-
pendence of x upon y) and involves control dependence
(the dependence of x upon a) as well as data dependence
(all other dependences in this example).

Variable dependence information can be used to aug-
ment the effectiveness of evolutionary testing. Evolution-
ary testing [26, 31, 32, 33, 37] uses search-based tech-
niques to find good quality test data by searching the set
of possible inputs. Test data quality is defined by a test
adequacy criterion, which underpins the fitness function
that drives the search implemented by the evolutionary
algorithm.

The computational effort required to find a suitable
test input (that causes execution to follow a required
branch) is closely related to the size of the space to be
searched. For each branch there is a controlling predicate.
The size of the search space is defined by the number of
input variables considered to be relevant to the computa-
tion of this predicate. Of course, not all input variables
contribute to the computation of every predicate. There
will be some predicates that depend upon relatively few
input variables. Clearly, in such cases, it is wasteful to
search the entire input space, when only a small portion
can possibly contain the required test input. This is the
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problem addressed by VADA. The approach adopted is
similar to the chaining approach of Ferguson and Korel
[17].

This paper describes the design and implementation
of the VADA system, and in particular, its combination of
transformation and analysis and its use of memoisation.
The principal contributions of the paper are as follows:

1. An illustration of the relationship between slicing
and variable dependence.

2. The description of a core language for C and an al-
gorithm for transforming C into this core.

3. A formal description of a slicing and variable depen-
dence algorithm for the core language.

4. An illustration of the benefits of this two phase trans-
form and analyse approach.

5. An empirical study into the performance improve-
ment produced by memoisation.

The core language has two useful properties. Com-
pared to a treatment of full C, it is relatively easy to

1. transform C into the core language

2. compute slices and variable dependence for the core
language

The rest of this paper is organised as follows. Sec-
tion 2 shows the relationship between slicing and vari-
able dependence. Sections 3 and 4 describe the overall
architecture of the VADA system and the core language
used by the slicing engine at its heart. Sections 5 and 6
describe the variable dependence analysis and transfor-
mation phases of the system in more detail and Section 7
presents some initial empirical results concerning the per-
formance of the analysis phase.

2 The Relationship Between Variable De-
pendence and Slicing

The problem of variable dependence is closely related
to program slicing [14, 20, 44] and chopping [25] because
it involves the traversal of transitive data and control de-
pendence relations. This section shows that the result
of variable dependence analysis can be used to compute
slices and that slicing is also useful in the computation of
variable dependence. In our implementation, variable de-
pendence for programs expressed in the whole language
is computed in terms of slices constructed for the trans-
formed program in the core language.

2.1 Slicing for Variable Dependence Analysis

Program slicing consists of identifying the parts of a
program that can potentially affect the values of a cho-
sen set of variables [6, 14, 20, 36, 44]. There are various
forms of slicing including the original static formulation
[43], and subsequent dynamic [1, 27], quasi-static [38],
conditioned and constrained [7, 10, 18] and pre/post con-
ditioned [21]. Slices can be construed to be syntax pre-
serving or amorphous [5, 19, 40].

The problem of computing static variable dependence
can be partly solved by a solution to the corresponding
static slicing question. This result can be used in order
to determine control flow. That is, in order to decide
whether p is in the control dependence relation for the
variable x in if (p==0) S, it is necessary to deter-
mine whether any of the statements of S contribute to the
computation of the value of x. This can be answered by
slicing S with respect to x. If the slice is empty, then the
value of x does not depend upon the value of p, otherwise
it does.

2.2 Variable Dependence for Slicing

Danicic [9] shows that slicing and variable depen-
dence are related: a slice can be computed from a vari-
able dependence relation by a suitable instrumentation of
the source program to be sliced. The instrumentation in-
volves inclusion of an additional referenced variable in
each expression. This is a unique variable, v, which oc-
curs nowhere else in the program. Therefore, if v is in-
cluded in the variable dependence for some variable v0

then the expression tagged by v is a member of the slice
on v0. The identification of expressions (both arithmetic
and boolean) required in a slice is sufficient to determine
the slice itself. That is, the nodes of the Control Flow
Graph typically denote expressions (either the boolean
expressions of conditional statements or the arithmetic
expressions of assignments).

For example, consider the program in Figure 2(a).
Static slices are typically computed for a schema in which
the information available determines the reference vari-
ables of an expression, but not the function mapping de-
noted by the expression [9]. The slice for the schema in
Figure 2(b) will therefore be valid of any instantiation of
functions for f3; f4 and f5 and predicates b1 and b2.

For instance, the final value of x depends upon the
pseudo variables fN1; N2; N3; N4; N5g, indicating that
the slice on x is the entire program. The variable i de-
pends upon the pseudo variablesN1 and N5 only indicat-
ing that the slice on i is the while loop and assignment
to i.
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while (i<0) f while (b1(i)) f while (b1(N1,i)) f
if (c==3) f if (b2(c)) f if (b2(N2,c)) f

c=y; c=f3(y); c=f3(N3,y);
x=x+5; g x=f4(x); g x=f4(x,N4); g

i=i+1; g i=f5(i); g i=f5(N5,i); g
(a) Program (b) Schema (c) With Expression Labelling Pseudo Variables

Figure 2. The Correspondence Between Slicing and Variable Dependence

3 The VADA System Architecture

The overall VADA system is split into two subcompo-
nents: a transformer and an analyser. The transformer
converts C source code into its representation in the
core language, which becomes the subject of the analy-
sis phase. This follows the approach first suggested by
Landin [29] and that has been widely used since.

The transformation phase preserves the variable de-
pendence relation (though not necessarily the full mean-
ing) of the original. The pre-transformation serves to
simplify the role of the analyser. The overall system ac-
cepts C, except that recursion and backward goto state-
ments are not currently supported. The system also as-
sumes side–effect free expressions but work is currently
in progress to augment the system with side effect re-
moval [22] as a part of the transformation phase.

VADA uses SWI-prolog1 to implement a syntax-
directed variable dependence algorithm, derived from the
parallel slicing algorithm of Danicic and Harman [11].
Prolog was chosen because it allows speedy prototyping
of new features and because it has elegant facilities for
processing the XML parse tree (produced by a propri-
etary third party parser licensed to DaimlerChrysler).

4 The Core Language

VADA’s the core language consists of a simple sub-
set of intraprocedural C. It is fully analysed to produce
both slices and variable dependence information. The
subset does not restrict expression notation, but does re-
strict procedural abstraction and only supports a limited
set of statement constructs. The syntax of the core lan-
guage is defined in Figure 3. The syntactic class I is the
class of C program identifiers.

A program in the core language consists of a set of
function definitions, the bodies of which are the state-
ment sequences of statements drawn from the syntactic
class C. The core allows for function definition but not
function call. Function calls are unfolded in the trans-
formation phase. Theoretically, this can lead to expo-
nential growth in program size, but in practice this prob-
lem has yet to be experienced by the authors; cases of

1SWI-Prolog is available under the GNU Public Licence from
http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

E ::= E1BOpE2

j !(E)
j I

j N
j I[E]
j E1?E2 : E3

BOp ::= + j � j � j % j == j ! = j && j jj : : :

C ::= I = E;
j if(E) C
j if(E) C1 else C2

j while(E) C
j fC1 ::: Cng
j gotoL;
j L :

Figure 3. The Syntax of the Core Language

exponential growth appear to be result of purely ‘patho-
logical examples’, which, though theoretically possible,
seldom appears to arise in practice. The syntax of dec-
larations is omitted for brevity; declarations only play a
role where structured types are concerned, since all scalar
types are considered to be equivalent at the level of ab-
straction dealt with by VADA.

The core language was chosen to facilitate easy trans-
lation from full C, without disturbing the control flow
relation of the full language. That is, the while loop
and if statement are retained as the paradigms of se-
lection and repetition, so that all conditional and iter-
ation constructs can be converted into these core con-
structs, while preserving the control dependence relation.
A smaller core language would have been possible [40],
but the objective was to retain a simple approach to con-
trol dependence, in which a predicate controls the state-
ments mentioned in its body. This greatly reduces the ef-
fort required to compute control dependence information
needed by the slicing and dependence analysis algorithm
for the core language.

5 The Slicer/Variable Dependence Anal-
yser for the Core Language

The prolog rules for slicing the core language yield
variable dependence information as a by-product. The
rules are attractively simple to define; the essence of the
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slicing engine is presented in Figure 4. The auxiliary
predicates (for which detail is not provided) are described
in English in Figure 5. Space does not allow the full
details of these rules to be given. However, they are
relatively straightforward and the reader can easily re-
construct all but the empty statement predicate, the
definition of which determines the precision of the slic-
ing algorithm in the presence of unreachable code. The
current implementation makes some attempt to recog-
nize unreachable code (which should be removed from
all slices regardless of the slicing criterion), but does not
detect all cases. Of course, in general, determination of
whether or not a piece of code is unreachable is unde-
cidable [2], but it remains open as to whether unreach-
able code can be determined at this level of abstraction
[9, 30, 45].

The parsing details are left abstract in the exposition;
rather than cluttering the details of the algorithm with
constructors and selectors for parsing, a form of syntactic
representation using Quine’s quasi quotes [[: : :]] has been
adopted. These quotes (or ‘syntactic brackets’) are typi-
cally used to distinguish the language under analysis from
the language used to perform the analysis [35].

Although Prolog allows the expression of pseudo non-
deterministic algorithms via backtracking, our simple
slicing algorithm is fully deterministic, and hence has no
need to exploit this Prolog feature2.

The predicate slice has six arguments. Three are
input arguments and three are output arguments. These
arguments retain this distinct role throughout the compu-
tation of slices and variable dependence.

The predicate call

slice(MapIn,MapOut,C,CritIn,C’,CritOut)

takes a statement C and an input criterion (a set of vari-
ables of interest) CritIn, and returns a slice C’ and an
output criterion (a set of variables upon which CritIn
depends), CritOut. The predicate slice also takes a
mapping from labels to slicing criteria, MapIn and pro-
duces an updated mapping, MapOut.

The slice C’ is the end slice [28] of the statement C
with respect to the set of variables CritIn. CritOut
is the set of variables, the initial values of which (prior to
execution of C) determine the values of the variables in
CritIn after the execution of C. The mapping, MapIn,
records the slicing criterion that was computed for the la-
bels as they are encountered. This mapping is updated
as new labels are discovered. In the computation of fixed
points (for the computation of the variables set CritOut

2As the algorithm is deterministic, the implementation can make
extensive use of the cut operator (!) to eliminate irrelevant “choice
points,” and hence reduce memory consumption. However, these de-
tails are not relevant to the values of slices and variable dependence
computed and so they are omitted from the exposition.

for while loops) the mapping is also updated for previ-
ously encountered labels that are re-encountered as the
iteration to the fixedpoint proceeds.

Each of the rules for computing slices are relatively
straightforward. The assignment and conditional rules
implement, in Prolog, the traditional dataflow equations
used for slicing [11, 44]. Each rule is processed according
to Prolog’s first fit pattern-matching rules, so that the rule
that keeps a statement in the slice is considered first, and
only if this fails is the statement removed, by the clause
that follows.

The rule for slicing a while loop deserves a little fur-
ther explanation. The rule first slices the body of the
loop. If this is empty, then the slice should remove the
entire while loop, hence the ‘not empty’ test in the sec-
ond line of the first clause for while loops. However,
if the loop is to be retained, it is necessary to compute
the smallest set of variables that contains the input crite-
rion (CritIn) and that remains invariant after the loop
body is completed. The predicate find fixpoint
has the role of computing this criterion, storing the re-
sult in FixPointCrit. However, the value of Fix-
PointCrit is not the ultimate resulting criterion, as the
loop may not be executed (so the initial CritIn should
be retained), and should always contain the predicate ref-
erenced variables (so PredRefs is retained). There is
a more elegant method of handling loops in terms of un-
folded, nested if statements, but this is less efficient.

The rules for labels (labels are treated as statements by
the parser) and goto statements, merely record and re-
store, respectively, the criterion associated with the label
mentioned in the statement.

6 The Transformation Phase

The transformation phase transforms C programs into
the core language, the syntax of which was defined in
Figure 3. The overall transformation algorithm is as fol-
lows:

Step 1 Insert Dependence Criteria Assignments
Step 2 Globalise local scope
Step 3 Build function and procedure symbol table
Step 4 Unfold procedure calls
Step 5 Globalise local scope
Step 6 Statement-level transformation rules

The remainder of this section describes each step in more
detail.

Step 1 inserts assignment statements to pseudo vari-
ables to capture the criteria specified by the user in an
XML variable dependence criterion. These assignments
allow dependence at arbitrary points in the program to be
computed in terms of corresponding dependences at the
end of the program. For example, to insert a criterion
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slice(MapIn,MapIn,[[I = E; ]],CritIn,[[I = E; ]],CritOut) :-
intersection(CritIn,[ I ],Intersection),
not(Intersection = []),
collect refs([[E]], VarNamesR),
subtract(CritIn,VarNamesL,Difference),
union(Difference,VarNamesR,CritOut).

slice(MapIn,MapIn,[[I = E; ]],CritIn,[[]],CritIn).

slice(MapIn,MapOut,[[if(E) C]],CritIn,[[if(E) C0]],CritOut) :-
slice(MapIn,MapOut,[[C]],CritIn,[[C0]],CritThen),
not(empty statement([[C0]])),
collect refs([[E]] ,PredRefs),
big union([CritIn,CritThen,PredRefs],CritOut).

slice(MapIn,MapOut,[[if(E) C1 else C2]],CritIn, [[if(E) C0

1
else C0

2
]],CritOut) :-

slice(MapIn,ThenMapOut,[[C1]],CritIn,[[C0

1
]],CritThen),

slice(MapIn,ElseMapOut,[[C2]],CritIn,[[C0

2
]],CritElse),

(not(empty statement([[C0

1
]]));not(empty statement([[C0

2
]]))),

collect refs([[E]],PredRefs),
union(ThenMapOut,ElseMapOut,MapOut),
big union([CritThen,CritElse,PredRefs],CritOut).

slice(MapIn,MapIn,[[if(E) C]],CritIn,[[]],CritIn).

slice(MapIn,MapOut,[[while(E) C]],CritIn,[[while(E) C0]],CritOut) :-
slice(MapIn, MapOut,[[C]],CritIn,[[C00]],FirstCritOut),
not(empty statement([[C00]])),
collect refs([[E]],PredRefs),
find fixpoint(MapIn, MapOut’,PredRefs,[],FirstCritOut,[[C]], CritIn’,FixPointCrit),
union(FixPointCrit,CritIn,CritOfSlicedBody),
slice(MapIn,MapOut,[[C]],CritOfSlicedBody,[[C0]],CritOutFromSlicedBody),
big union([CritOutFromSlicedBody,PredRefs,CritIn],CritOut).

slice(MapIn,MapIn,[[while(E) C]],CritIn,[[]],CritIn) :-

slice(MapIn,MapOut,[[fC1 ::: Cn�1 Cng]],CritIn,fC0

1
::: C0

n�1
C0

ng,CritOut) :-
slice(MapIn,MapInternal,[[Cn]],CritIn,[[C0

n]],CritInternal),
slice(MapInternal,MapOut[[fC1 ::: Cn�1g]],CritInternal,[[fC0

1
::: C0

n�1
g]],CritOut).

slice(MapIn,MapIn,[[goto L; ]], CritIn,[[goto L; ]],CritOut) :-
lookupMap(MapIn,[[L]],CritOut).

slice(MapIn,MapOut, [[L :]],CritIn,[[L :]],CritIn) :-
updateMap(MapIn,[[L]],CritIn,MapOut).

find fixpoint(MapIn,MapIn, PredRefs,PrevButOneCrit,PrevCrit, Body, CritIn,PrevCrit) :-
subset(PrevCrit,PrevButOneCrit).

find fixpoint(MapIn,MapIn,PredRefs, PrevButOneCrit,PrevCrit,Body,CritIn,FinalCrit) :-
big union([PrevCrit,PredRefs,CritIn],NewCritIn),
slice(MapIn,MapOut’,Body,NewCritIn, Body2,CurrentCrit),
find fixpoint(MapOut’,MapOut,PredRefs,PrevCrit,CurrentCrit,Body,CritIn,FinalCrit).

Figure 4. Core Language Slicing Algorithm in Prolog Pseudo Code

Auxiliary Prolog Predicate Purpose
big union Forms the distributed union of a set of sets
collect refs Determines the referenced variables of an expression
empty statement Determines whether a statement contains only dead code

and empty structures
lookupMap Find the criteria to which a label is mapped
updateMap Update a map to record a new mapping for a Label to a Criterion

Figure 5. Details of Auxiliary Predicates used by the Slicer/Variable Dependence Analyser
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fv1; : : : ; vng, an assignment � = � + v1 + : : : + vn is
inserted at the point of interest, where � is a pseudo vari-
able not otherwise used in the program. The fact that the
expression assigned to this pseudo variable involves addi-
tions reflects and arbitrary choice of operator required in
order to ensure that the variables in fv1; : : : ; vng are ref-
erenced. The pseudo variable itself, is also included as a
referenced variable in order to correctly compute depen-
dence on fv1; : : : ; vng, where the point of interest lies
inside a loop.

Step 2 creates new, previously unused variables and
uses these to replace, consistently, the occurrences of lo-
cal variables, thereby removing local scope and ensuring
that all variables are, effectively, global variables. This
simplifies the variable analysis phase, particularly in the
presence of break and return statements. Subsequent
transformation steps replace both break and return
statements with forward jumps, but they retain the prop-
erty that they allow criteria to pass from an outer to an in-
ner scope. Without globalisation, the scope rules would
have to be taken into account every time such a state-
ment is encountered and, potentially, separate treatments
would be required for each variable, depending upon its
scope binding.

Step 3 is a pre-requisite for Step 4. It is not really
a transformation step because it does not affect the pro-
gram, but it is required in order to record the mapping
from the name of a procedure to its body.

Step 4 uses the procedure symbol table that was cre-
ated in step 3 to unfold each call to a procedure call in the
bodies of procedures. Clearly this is not possible in the
presence of recursion. However, VADA was designed for
use with the DAIMLERCHRYSLER Evolutionary Testing
System, which is typically applied to embedded systems,
which rarely, if ever, contain recursion.

Unfolding procedures may seem like a wasteful and
rather crude transformation to perform. However it has
a number of advantages that make it worthwhile in prac-
tice. Specifically, the subsequent analysis phase is not
only considerably easier to express, it is also faster. This
extra speed is obtained at the expense of space, but not
precision. The slicer (which produces variable depen-
dence as a by product) need only be intraprocedural; the
unfolding of procedure calls takes account of the calling
context by introducing assignments to the formal param-
eters from the actual parameters of the call. This means
that during the analysis there is no additional overhead to
take account of calling context. A similar association of
formals to actuals is achieved in standard approaches to
slicing [24], without the overhead of copying procedure
bodies. However, these approaches involve the construc-
tion of a dependence graph for the entire language under
consideration, which is a considerably larger undertaking
than the simple analysis required by VADA for its core

language. It is not obvious how these dependence graph
based approaches could be easily adapted to provide vari-
able dependence information, rather than slices.

Step 5 repeats the globalisation process. This is re-
quired because Step 4 creates additional local scope when
formal parameters are transformed into assignments to
new local variables. This second globalisation process
has to take place after the unfolding of procedures in
order to correctly account for formal parameters. How-
ever, the globalisation of procedure bodies also has to
take place before unfolding, in order to ensure that af-
ter unfolding, each mention of the same local variable is
mapped to the same global variable, regardless of the call
instance. Therefore, globalisation has to be performed
twice: once before unfolding and once after.

Step 6 performs statement level transformations.
These simplify language under consideration. For in-
stance, the C language offers many ways of assigning a
value to a variable, through assignment expressions, us-
ing assignment operators like += and &= and through
the use of pre- and post- increment and decrement op-
erators. Sequencing of assignments within expressions
is also possible using the comma operator. When such
expressions are encountered as statements, they are each
transformed into ‘regular’ assignment statements of the
form I = E;. The do and for looping constructs are
converted to while constructs. This means that only
a single looping construction need be considered in the
analysis phase. This is a saving in development effort, as
correct account of looping constructs requires a fixpoint
computation, as explained in Section 5 and memoisation,
as explained in Section 7. It also has a positive benefit on
testing an verification, since the transformation steps can
be readily understood and verified in isolation, leaving
only a single looping construct to be tested.

The ‘jump’ statements, break, continue and
return are converted to forward goto statements and
labels are introduced in order to capture the targets of
these goto statements. This allows all these three for-
ward jumps3 to be treated identically in the analysis
phase. This unification of statement construct offers sim-
ilar benefits for understanding, development and verifica-
tion as the unification of looping constructs.

However, all of these transformations are unremark-
able and well-studied in the literature and folklore of
transformation. What was more surprising was to dis-
cover that transformations need not be meaning preserv-
ing, at least, not in the traditional sense of meaning—
that is typically considered to be some form of func-
tional equivalence [3, 4, 13, 34, 39, 41]. Although non-
meaning preserving transformations have been consid-
ered for program modification in corrective and adaptive
maintenance [15, 16], the use of non-meaning preserv-

3A return becomes a forward jump after unfolding.
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ing transformation here appears to be novel. That is, for
the purpose of producing the core language from the C
language, it is only necessary to preserve sufficient as-
pects of the behaviour of the program to ensure that the
variable dependence relation remains invariant through-
out the transformation. The authors believe that this may
turn out to be a significant and useful departure from tra-
ditional program transformation. This is reminiscent of
the recent trend in abstract interpretation research away
from applications to analysis and towards manipulation
[8].

6.1 Ease of Handling Semantically Complex
Constructs: the switch Statement

The transformation function RL(C) produces a state-
ment or statement sequence C 0 from a statement of state-
ment sequence C. C 0 is identical to C except that all
occurrences of the break statement have been replaced
by the statement goto L;. The transformation of a
switch statement converts the switch into a nested
conditional, using RL(C), to replace break statements
with forward jumps that exit the nested structure. More
formally, the switch statement switch (E) f case c1 :
C1 : : : case cn : Cn default : d g is transformed to the
nested conditional

if (E)
f if (1)
f if (1)
...

f if (1)
f if (1) RL(C1) g
RL(C2) g
...

RL(Cn�1) g
RL(Cn) g

else d
L:;

Notice that this transformation does not preserve func-
tional equivalence. It does not need to. It need only pre-
serve the variable dependence relation. The outermost
conditioned predicate is simply E, since the variable de-
pendence upon the reference variable of E is all that is
needed. Furthermore, the inner tests are merely present to
create a conditional structure to replicate the optionality
of the switch, but the dependence upon E has already
been accounted for by the outermost E, and so the test
is not repeated. This does not preserve functional equiv-
alence, but does allow a correct computation of variable
dependence, and does so more efficiently than the fully
functional equivalent version of the nested conditional.

Moreover, the transformation to this nested condi-
tional considerably simplifies the treatment of the prob-
lem of fall-through cases in switch statements. These
fall through cases are a peculiar feature of C switch
statements—that are often implemented as jump tables—
in which each case is performed and execution can fol-
low through to the cases below where there is no break
statement to terminate the case. Also, break statements
need not occur at the end of the code for the case, and
there may be many.

It is therefore possible to create switch statements
in which there is a nested conditional structure for some
case and where this conditional has some paths contain-
ing break statements, while others simply cause execu-
tion to fall through to the lexically succeeding case.

A radical transformation that suggests itself would be
to reverse the statements order of all statements in the
program under inspection before applying forward de-
pendence analysis in order to compute backward depen-
dence. The result would be equivalent to variable depen-
dence analysis as described here, but with the advantage
of employing a tail recursive algorithm, which lends it-
self to optimisation. This possibility remains a topic for
future work. However, the current implementation does
contain a number of memoisation based performance en-
hancements, described in the next section.

7 Performance

The VADA system is designed to support the DAIM-
LERCHRYSLER Evolutionary Testing System, which is a
test data generation system for unit level testing. There-
fore the system will only have to scale to the size of a
typical unit. This context of execution is kind to VADA.
It means that a computation that takes a few minutes, or
even more, can be forgiven if there is a reduction in the
size of the search space of input variables. Since not all
predicates of all programs will depend upon all input vari-
ables, the computational effort required by VADA will al-
most certainly be considered worthwhile.

The algorithmic complexity of the transformation
phase is essentially linear as it involves several passes
through the program, each of which is linear4.

The complexity of the slicing and variable dependence
analysis phase can vary dramatically, from linear in the
best case to (potentially) exponential in the worst case.
The worst case contains a sequence of loop carried depen-
dencies (or ‘backward assignment’) in which each vari-
able is assigned a value that depends upon the assign-
ment that immediately follows it in the lexical order of

4As previously observed, the worst case for unfolding is exponen-
tial, but only in the depth of the call tree that grows logarithmically with
program size and typically has a low value for unit level code.
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the loop body. In the worst case, this ‘backward assign-
ment’ is nested within a chain of nested loops, each of
which contains killing assignments to the variables in the
innermost loop and to the loop control variables. For such
a program, the number of criteria that need to be consid-
ered by the innermost loop is exponential in the number
of program variables (though not in the program size).

Clearly, such a highly artificial construction as the
‘worst case’ program is unlikely to be presented to VADA

for analysis. However, the existence of such a program
presents an upper bound on performance time and al-
lowed an initial empirical evaluation of the performance
of the system.

This analysis revealed that the performance in the
presence of quite modest levels of loop nesting was unac-
ceptably slow, so a memoisation feature was added to the
variable dependence analysis phase. That is, a data struc-
ture of previously encountered slicing criteria is main-
tained for while loops. Where a criteria has previously
been met, there is no point in re-computing the depen-
dence. This creates a saving in computation time at the
expense of memory space to record previously encoun-
tered criteria. However, it appears that the extra memory
used by memoisation is more than offset by the reduc-
tion in call stack usage, as the memoisation reduces the
average depth of recursion in the algorithm.

Interestingly, in this example of program analysis, the
memoisation process can be further improved. Variable
dependence is monotonic. That is, if V ada (S; V ) denotes
the set of variables whose initial values are determined by
the set of variables V in the program S, then

U � V ) V ada(S;U) � V ada (S; V )

This means that if a while loop is to be analysed with
respect to a set of variables V , but a larger set has al-
ready been encountered in a previous computation, then
the result of the previous computation can be used. Fur-
thermore, variable dependence is distributive

Vada(S; V [ U) = Vada(S; V ) [ V ada (S;U)

This means that the results from several previous com-
putations on subsets can be composed to form a partial
answer to a current variable dependence question. These
observations of monotonicity and distributivity are typ-
ically used to improve performance of variable depen-
dence using monotone dataflow analysis frameworks [2].
Similar memoisation techniques are also used by Harrold
and Ci [23] to improve slicing using dataflow based algo-
rithms.

A memoisation algorithm was implemented that ex-
ploits monotonicity and distributivity of variable depen-
dence and we obtained a significant improvement in
worst case performance. The result of our initial study
of performance are presented in next subsection.

7.1 Results

Timings taken on a AMD 1GHz based PC running
Linux 2.4.8 with a memory bandwidth of circa 147MB/s
(as measured by hdparm). Measurements were taken by
averaging the sum of the user and system CPU time, as
measured by the GNU time program, over three runs for
each test case.

Figure 6 shows execution times for different numbers
of worst-case backward assignments within five nested
while loops, with and without memoisation.

Figure 7 shows execution times for different depths
of while-loop nesting containing 50 worst-case back-
ward assignments, with and without memoisation. The
maximum depth of nesting that could be analysed with-
out memoisation was restricted by memory constraints.
In particular, the 32 bit architecture of the test machine
imposed a maximum stack limit of 128MB (with SWI-
Prolog) that was exhausted with depths of six or more (ten
or more with fewer backward assignments). No attempt
was made to find the corresponding limit with memoisa-
tion due to limits of testing time.

Figure 8 shows the execution times for forward assign-
ments with no loops, where there is dependency on every
assignment. There is no meaningful difference in the tim-
ings for the original and memoised versions of the system
because the code that is responsible for managing mem-
oisation is only invoked when analysing loops.
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Figure 6. Timings for worst-case back-
ward assignments within five nested while
loops (timings without memoisation are
shown by a dashed line)

One result deserves further discussion. Even with
memoisation, the worst case performance of VADA dis-
plays an exponential component. The worst case per-
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Figure 7. Timings for while loop nesting
with 50 worst-case backward assignments
(timings without memoisation are shown by
a dashed line)

formance without memoisation is clearly far worse than
the performance with memoisation, but the reader may
be surprised that memoisation has not resulted in a linear
performance. This is because the current version of mem-
oisation, as implemented in VADA, uses a Prolog nested
list data structure to store previously encountered crite-
ria. This data structure becomes exponentially large as
the degree of loop nesting increases. An improvement is
planned using Prolog’s built-in assert and retract
mechanism that will allow the information about previ-
ously encountered criteria to be stored in a hash table,
with near constant lookup time. The will further improve
performance. The initial results from this trial implemen-
tation of memoisation are encouraging, and indicate that
the hash-table version of VADA will have performance
sufficient for use with the DAIMLERCHRYSLER Evolu-
tionary Testing System.

8 Conclusion

This paper has presented an approach to computing
variable dependence that requires program slicing for
control dependence. The VADA system computes vari-
able dependence for the C programming language. Con-
structing a slicer for the full range of C syntax and se-
mantics is a large and complex undertaking. The VADA

system adopts the approach of transforming the full C
language to a more manageable core language, for which
slicing and variables dependence are computed. A mem-
oisation approach is used to improve the efficiency of the
analysis phase and initial empirical results on the speed-
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Figure 8. Timings for forward assignments
with no loops (timings without memoisa-
tion are shown by a dashed line)

up it produces have been presented.
A novel aspect of these transformations is that they

are not meaning preserving. At least, they do not pre-
serve the traditional functional equivalence relation that
has remained the sine qua non of work on source-to-
source transformation since the 1970s [12]. The VADA

transformation engine need only preserve the variable de-
pendence relation of a program.
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