25 research outputs found

    Navigation system for robot-assisted intra-articular lower-limb fracture surgery

    Get PDF
    Purpose In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. Methods 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon’s virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. Results The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of 0.95±0.3mm (translational) and 1.4∘±0.5∘ (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and 1.56∘±0.1∘, when the robot reduced the fracture. Conclusions Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and 1.5∘, and meeting the clinical requirements for distal femur fracture reduction procedures

    Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow

    Get PDF
    Background: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. Methods: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). Results: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s−1 versus post-TAVI 3.04±1.6 mm Hg·cm·s−1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. Conclusions: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease

    The ability of contemporary cardiologists to judge the ischemic impact of a coronary lesion visually

    Get PDF
    Background: Landmark trials showed that invasive pressure measurement (Fractional Flow Reserve, FFR) was a better guide to coronary stenting than visual assessment. However, present-day interventionists have benefited from extensive research and personal experience of mapping anatomy to hemodynamics. Aims: To determine if visual assessment of the angiogram performs as well as invasive measurement of coronary physiology. Methods: 25 interventional cardiologists independently visually assessed the single vessel coronary disease of 200 randomized participants in The Objective Randomized Blinded Investigation with optimal medical Therapy of Angioplasty in stable angina trial (ORBITA). They gave a visual prediction of the FFR and Instantaneous Wave-free Ratio (iFR), denoted vFFR and viFR respectively. Each judged each lesion on 2 occasions, so that every lesion had 50 vFFR, and 50 viFR assessments. The group consensus visual estimates (vFFR-group and viFR-group) and individual cardiologists' visual estimates (vFFR-individual and viFR-individual) were tested alongside invasively measured FFR and iFR for their ability to predict the placebo-controlled reduction in stress echo ischemia with stenting. Results: Placebo-controlled ischemia improvement with stenting was predicted by vFFR-group (p < 0.0001) and viFR-group (p < 0.0001), vFFR-individual (p < 0.0001) and viFR-individual (p < 0.0001). There were no significant differences between the predictive performance of the group visual estimates and their invasive counterparts: p = 0.53 for vFFR vs FFR and p = 0.56 for viFR vs iFR. Conclusion: Visual assessment of the angiogram by contemporary experts, provides significant additional information on the amount of ischaemia which can be relieved by placebo-controlled stenting in single vessel coronary artery disease

    Placebo-controlled efficacy of percutaneous coronary intervention for focal and diffuse patterns of stable coronary artery disease

    Get PDF
    Background: Physiological assessment with pressure wire pullback can characterize coronary artery disease (CAD) with a focal or diffuse pattern. However, the clinical relevance of this distinction is unknown. We use data from the ORBITA trial (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina) to test if the pattern of CAD predicts the placebo-controlled efficacy of percutaneous coronary intervention (PCI) on stress echocardiography ischemia and symptom end points. Methods: One hundred sixty-four patients in ORBITA underwent blinded instantaneous wave-free ratio (iFR) pullback assessment before randomization. Focal disease was defined as a ≥0.03 iFR unit drop within 15 mm, rather than over a longer distance. Analyses were performed using regression modeling. Results: In the PCI arm (n=85), 48 were focal and 37 were diffuse. In the placebo arm (n=79), 35 were focal and 44 were diffuse. Focal stenoses were associated with significantly lower fractional flow reserve (FFR) and iFR values than diffusely diseased vessels (mean FFR and iFR, focal 0.60±0.15 and 0.65±0.24, diffuse 0.78±0.10 and 0.88±0.08, respectively, P<0.0001). With adjustment for this difference, PCI for focal stenoses resulted in significantly greater reduction in stress echo ischemia than PCI for diffuse disease (P<0.05). The effect of PCI on between-arm pre-randomization adjusted exercise time was 9.32 seconds (95% CI, −17.1 to 35.7 seconds; P=0.487). When stratified for pattern of disease, there was no detectable difference between focal and diffuse CAD (Pinteraction=0.700). PCI improved Seattle Angina Questionnaire angina frequency score and freedom from angina more than placebo (P=0.034; P=0.0035). However, there was no evidence of interaction between the physiological pattern of CAD and these effects (Pinteraction=0.436; Pinteraction=0.908). Conclusions: PCI achieved significantly greater reduction of stress echocardiography ischemia in focal compared with diffuse CAD. However, for symptom end points, no such difference was observed

    Algorithmic Versus Expert Human Interpretation of Instantaneous Wave-Free Ratio Coronary Pressure-Wire Pull Back Data

    Get PDF
    Objectives The aim of this study was to investigate whether algorithmic interpretation (AI) of instantaneous wave-free ratio (iFR) pressure-wire pull back data would be noninferior to expert human interpretation. Background Interpretation of iFR pressure-wire pull back data can be complex and is subjective. Methods Fifteen human experts interpreted 1,008 iFR pull back traces (691 unique, 317 duplicate). For each trace, experts determined the hemodynamic appropriateness for percutaneous coronary intervention (PCI) and, in such cases, the optimal physiological strategy for PCI. The heart team (HT) interpretation was determined by consensus of the individual expert opinions. The same 1,008 pull back traces were also interpreted algorithmically. The coprimary hypotheses of this study were that AI would be noninferior to the interpretation of the median expert human in determining: 1) the hemodynamic appropriateness for PCI; and 2) the physiological strategy for PCI. Results Regarding the hemodynamic appropriateness for PCI, the median expert human demonstrated 89.3% agreement with the HT in comparison with 89.4% for AI (p < 0.01 for noninferiority). Across the 372 cases judged as hemodynamically appropriate for PCI according to the HT, the median expert human demonstrated 88.8% agreement with the HT in comparison with 89.7% for AI (p < 0.0001 for noninferiority). On reproducibility testing, the HT opinion itself changed 1 in 10 times for both the appropriateness for PCI and the physiological PCI strategy. In contrast, AI showed no change. Conclusions AI of iFR pressure-wire pull back data was noninferior to expert human interpretation in determining both the hemodynamic appropriateness for PCI and the optimal physiological strategy for PCI

    Study on European market-oriented passenger car design based on quantitative representation of shape characteristics

    No full text
    Due to the poor evaluation of the design of Japanese cars in the European market, this study proposes an evaluation to improve the rating of Japanese cars by Europeans. First, the concept of passenger car design evaluation is defined. Based on this definition, the appearance of a front image of a passenger car is decomposed into primitive components, and each component is analyzed in terms of shape, size, and position information. The shape information can be evaluated by two quantitative methods: Fourier series expression and aspect ratio calculation. To validate the evaluation method, five Volkswagen, four Peugeot, and three Toyota cars are sampled. The analysis indicates obvious differences in the headlights and radiator grille. Furthermore, a design modification method is proposed. Because design differences between European and Japanese cars are quantitatively evaluated, identifying necessary modifications should be easy. As a trial, one Toyota car design is modified by changing the features of the radiator grille and headlights to more closely resemble the characteristic shape of European cars. Then to validate the design modification, a design image investigation is conducted with the cooperation of 39 German citizens. This investigation demonstrates the design evaluation is effectively improved by altering the design of the headlights and radiator grille

    Physiological pattern of disease assessed by pressure-wire pullback has an influence on fractional flow reserve/instantaneous wave-free ratio discordance

    Get PDF
    BACKGROUND: Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) disagree on the hemodynamic significance of a coronary lesion in ≈20% of cases. It is unknown whether the physiological pattern of disease is an influencing factor for this. This study assessed whether the physiological pattern of coronary artery disease influences discordance between FFR and iFR measurement. METHODS AND RESULTS: Three-hundred and sixty intermediate coronary lesions (345 patients; mean age, 64.4±10.3 years; 76% men) with combined FFR, iFR, and iFR pressure-wire pullback were included for analysis from an international multicenter registry. Cut points for hemodynamic significance were FFR ≤0.80 and iFR ≤0.89, respectively. Lesions were classified into FFR+/iFR+ (n=154; 42.7%), FFR-/iFR+ (n=38; 10.6%), FFR+/iFR- (n=41; 11.4%), and FFR-/iFR- (n=127; 35.3%) groups. The physiological pattern of disease was classified according to the iFR pullback recordings as predominantly physiologically focal (n=171; 47.5%) or predominantly physiologically diffuse (n=189; 52.5%). Median FFR and iFR were 0.80 (interquartile range, 0.75-0.85) and 0.89 (interquartile range, 0.86-0.92), respectively. FFR disagreed with iFR in 22% (79 of 360). The physiological pattern of disease was the only influencing factor relating to FFR/iFR discordance: predominantly physiologically focal was significantly associated with FFR+/iFR- (58.5% [24 of 41]), and predominantly physiologically diffuse was significantly associated with FFR-/iFR+ (81.6% [31 of 38]; P<0.001 for pattern of disease between FFR+/iFR- and FFR-/iFR+ groups). CONCLUSIONS: The physiological pattern of coronary artery disease was an important influencing factor for FFR/iFR discordance

    How should I treat multiple coronary aneurysms with severe stenoses?

    No full text
    BACKGROUND: A 46-year-old male, with a history of old myocardial infarction in the first diagonal branch (D1) treated with balloon angioplasty three years before, was admitted to our institution because of chest pain on effort. He underwent coronary angiography which revealed multiple coronary aneurysms in the left anterior descending artery (LAD) and the D1 with severe stenoses in the LAD, D1, and the obtuse marginal branch. INVESTIGATION: Coronary angiography, fractional flow reserve, scintigraphy, coronary computed tomography. DIAGNOSIS: Multiple coronary aneurysms with severe stenoses. MANAGEMENT: Percutaneous coil embolisation and stenting
    corecore