207 research outputs found

    Emerging evidence for Q fever in humans in Denmark: role of contact with dairy cattle

    Get PDF
    AbstractUntil recently, Q fever was notified in very low numbers annually in Denmark and it was always considered to be acquired abroad. Preliminary reports now describe Coxiella burnetii in milk samples from Danish dairy cattle. Serum samples of a large cohort of farmers, veterinarians, inseminators and hoof trimmers, all having occupational contact with dairy cattle, were tested for the presence of IgG to phase I and phase II antigens of C. burnetii. In 39 of 359 individuals studied (11%), the presence of antibodies to C. burnetii was found. Veterinarians had the highest seropositivity rate (36%). This survey suggests that C. burnetii is a recently recognized domestic infection in Denmark and that risk of infection is associated with occupation

    Femtolens Imaging of a Quasar Central Engine Using a Dwarf Star Telescope

    Get PDF
    We show that it is possible to image the structure of a distant quasar on scales of ∌1 \sim 1\,AU by constructing a telescope which uses a nearby dwarf star as its ``primary lens'' together with a satellite-borne ``secondary''. The image produced by the primary is magnified by ∌105\sim 10^5 in one direction but is contracted by 0.5 in the other, and therefore contains highly degenerate one-dimensional information about the two-dimensional source. We discuss various methods for extracting information about the second dimension including ``femtolens interferometry'' where one measures the interference between different parts of the one-dimensional image with each other. Assuming that the satellite could be dispatched to a position along a star-quasar line of sight at a distance rr from the Sun, the nearest available dwarf-star primary is likely to be at \sim 15\,\pc\,(r/40\,\rm AU)^{-2}. The secondary should consist of a one-dimensional array of mirrors extending ∌700 \sim 700\,m to achieve 1 AU resolution, or ∌100 \sim 100\,m to achieve 4 AU resolution.Comment: 12 pages including 3 embedded figure

    Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes

    Full text link
    Weak lensing by large scale structure induces correlated ellipticities in the images of distant galaxies. The two-point correlation is determined by the matter power spectrum along the line of sight. We use the fully nonlinear evolution of the power spectrum to compute the predicted ellipticity correlation. We present results for different measures of the second moment for angular scales \theta \simeq 1'-3 degrees and for alternative normalizations of the power spectrum, in order to explore the best strategy for constraining the cosmological parameters. Normalizing to observed cluster abundance the rms amplitude of ellipticity within a 15' radius is \simeq 0.01 z_s^{0.6}, almost independent of the cosmological model, with z_s being the median redshift of background galaxies. Nonlinear effects in the evolution of the power spectrum significantly enhance the ellipticity for \theta < 10' -- on 1' the rms ellipticity is \simeq 0.05, which is nearly twice the linear prediction. This enhancement means that the signal to noise for the ellipticity is only weakly increasing with angle for 2'< \theta < 2 degrees, unlike the expectation from linear theory that it is strongly peaked on degree scales. The scaling with cosmological parameters also changes due to nonlinear effects. By measuring the correlations on small (nonlinear) and large (linear) angular scales, different cosmological parameters can be independently constrained to obtain a model independent estimate of both power spectrum amplitude and matter density \Omega_m. Nonlinear effects also modify the probability distribution of the ellipticity. Using second order perturbation theory we find that over most of the range of interest there are significant deviations from a normal distribution.Comment: 38 pages, 11 figures included. Extended discussion of observational prospects, matches accepted version to appear in Ap

    Warped Galaxies From Misaligned Angular Momenta

    Get PDF
    A galaxy disk embedded in a rotating halo experiences a dynamical friction force which causes it to warp when the angular momentum axes of the disk and halo are misaligned. Our fully self-consistent simulations of this process induce long-lived warps in the disk which mimic Briggs's rules of warp behavior. They also demonstrate that random motion within the disk adds significantly to its stiffness. Moreover, warps generated in this way have no winding problem and are more pronounced in the extended \h1 disk. As emphasized by Binney and his co-workers, angular momentum misalignments, which are expected in hierarchical models of galaxy formation, can account for the high fraction of warped galaxies. Our simulations exemplify the role of misaligned spins in warp formation even when the halo density is not significantly flattened.Comment: 6 pages, 5 figures. Accepted for publication in Ap.J.

    Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods

    Full text link
    Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to simulated data sets, showing that they give a good agreement with the theoretical minimum variance expectations. The same estimator can also be applied to the cluster reconstruction, where it remains a useful reconstruction technique, although it is no longer optimal for every application. The method can be generalized to include nonlinear cluster reconstruction and photometric information on redshifts of background galaxies in the analysis. We also address the question of how to obtain directly the 3-d power spectrum from the weak lensing data. We derive a minimum variance quadratic estimator, which maximizes the likelihood function for the 3-d power spectrum and can be computed either from the measurements directly or from the 2-d power spectrum. The estimator correctly propagates the errors and provides a full correlation matrix of the estimates. It can be generalized to the case where redshift distribution depends on the galaxy photometric properties, which allows one to measure both the 3-d power spectrum and its time evolution.Comment: revised version, 36 pages, AAS LateX, submitted to Ap

    Magnification-Temperature Correlation: the Dark Side of ISW Measurements

    Get PDF
    Integrated Sachs-Wolfe (ISW) measurements, which involve cross-correlating the CMB with the foreground large-scale structure (e.g. galaxies/quasars), have proven to be an interesting probe of dark energy. We show that magnification bias, which is the inevitable modulation of the foreground number counts by gravitational lensing, alters both the shape and amplitude of the observed ISW signal. This is true especially at high redshifts because (1) the intrinsic galaxy-temperature signal diminishes greatly back in the matter dominated era, (2) the lensing efficiency increases with redshift and (3) the number count slope generally steepens with redshift in a magnitude limited sample. At z >~ 2, the magnification-temperature correlation dominates over the intrinsic galaxy-temperature correlation and causes the observed ISW signal to increase with z, despite dark energy subdominance -- a result of the fact that magnification probes structures between the observer and the sources. Ignoring magnification bias can then lead to erroneous conclusions about dark energy. While the lensing modulation opens up an interesting high z window for ISW measurements, high z measurements are not expected to add much new information to low z ones if dark energy is the cosmological constant. This is because lensing introduces significant covariance across redshifts. The most compelling reason to pursue high z ISW measurements is to look for a potential surprise such as early dark energy domination or the signature of modified gravity. We conclude with a discussion of existing measurements, the highest z of which is at the margin of being sensitive to magnification bias. We also develop a formalism which might be of general interest: to predict biases in estimating parameters when certain physical effects are ignored in interpreting data.Comment: 14 pages, 12 figures, references added, minor typos corrected, accepted for publication by PR

    The Robustness of Dark Matter Density Profiles in Dissipationless Mergers

    Full text link
    We present a comprehensive series of dissipationless N-body simulations to investigate the evolution of density distribution in equal-mass mergers between dark matter (DM) halos and multicomponent galaxies. The DM halo models are constructed with various asymptotic power-law indices ranging from steep cusps to core-like profiles and the structural properties of the galaxy models are motivated by the LCDM paradigm of structure formation. The adopted force resolution allows robust density profile estimates in the inner ~1% of the virial radii of the simulated systems. We demonstrate that the central slopes and overall shapes of the remnant density profiles are virtually identical to those of the initial systems suggesting that the remnants retain a remarkable memory of the density structure of their progenitors, despite the relaxation that accompanies merger activity. We also find that halo concentrations remain approximately constant through hierarchical merging involving identical systems and show that remnants contain significant fractions of their bound mass well beyond their formal virial radii. These conclusions hold for a wide variety of initial asymptotic density slopes, orbital energies, and encounter configurations, including sequences of consecutive merger events, simultaneous mergers of severals ystems, and mergers of halos with embedded cold baryonic components in the form of disks, spheroids, or both. As an immediate consequence, the net effect of gas cooling, which contracts and steepens the inner density profiles of DM halos, should be preserved through a period of dissipationless major merging. Our results imply that the characteristic universal shape of DM density profiles may be set early in the evolution of halos.Comment: Accepted for publication in ApJ, 20 pages, 10 figures, LaTeX (uses emulateapj.cls

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg

    Measuring and Modelling the Redshift Evolution of Clustering: the Hubble Deep Field North

    Get PDF
    (abridged) The evolution of galaxy clustering from z=0 to z=4.5 is analyzed using the angular correlation function and the photometric redshift distribution of galaxies brighter than I_{AB}\le 28.5 in the HDF North. The reliability of the photometric redshift estimates is discussed on the basis of the available spectroscopic redshifts, comparing different codes and investigating the effects of photometric errors. The redshift bins in which the clustering properties are measured are then optimized to take into account the uncertainties of the photometric redshifts. The results show that the comoving correlation length has a small decrease in the range 0<z<1 followed by an increase at higher z. We compare these results with the theoretical predictions of a variety of cosmological models belonging to the general class of CDM. The comparison with the expected mass clustering evolution indicates that the observed high-redshift galaxies are biased tracers of the dark matter with an effective bias b strongly increasing with redshift. Assuming an Einstein-de Sitter universe, we obtain b\simeq 2 at z=2 and b\simeq 5 at z=4. A comparison of the clustering amplitudes that we measured at z=3 with those reported for LBG suggests that the clustering depends on the abundance of the objects: more abundant objects are less clustered, as expected in the paradigm of hierarchical galaxy formation. The strong clustering and high bias measured at z=3 are consistent with the expected density of massive haloes predicted for the various cosmologies here considered. At z=4, the strong clustering observed in the HDF requires a significant fraction of massive haloes to be already formed by that epoch. This feature could be a discriminant test for the cosmological parameters if confirmed by future observations.Comment: 23 pages, Latex using MN style, figures enclosed. Version accepted for publication in MNRA

    Ray Tracing Simulations of Weak Lensing by Large-Scale Structure

    Get PDF
    We investigate weak lensing by large-scale structure using ray tracing through N-body simulations. Photon trajectories are followed through high resolution simulations of structure formation to make simulated maps of shear and convergence on the sky. Tests with varying numerical parameters are used to calibrate the accuracy of computed lensing statistics on angular scales from about 1 arcminute to a few degrees. Various aspects of the weak lensing approximation are also tested. For fields a few degrees on a side the shear power spectrum is almost entirely in the nonlinear regime and agrees well with nonlinear analytical predictions. Sampling fluctuations in power spectrum estimates are investigated by comparing several ray tracing realizations of a given model. For survey areas smaller than a degree on a side the main source of scatter is nonlinear coupling to modes larger than the survey. We develop a method which uses this effect to estimate the mass density parameter Omega from the scatter in power spectrum estimates for subregions of a larger survey. We show that the power spectrum can be measured accurately from realistically noisy data on scales corresponding to 1-10 Mpc/h. Non-Gaussian features in the one point distribution function of the weak lensing convergence (reconstructed from the shear) are also sensitive to Omega. We suggest several techniques for estimating Omega in the presence of noise and compare their statistical power, robustness and simplicity. With realistic noise Omega can be determined to within 0.1-0.2 from a deep survey of several square degrees.Comment: 59 pages, 22 figures included. Matches version accepted for Ap
    • 

    corecore