388 research outputs found
Block copolymer self-assembly for nanophotonics
The ability to control and modulate the interaction of light with matter is crucial to achieve desired optical properties including reflection, transmission, and selective polarization. Photonic materials rely upon precise control over the composition and morphology to establish periodic interactions with light on the wavelength and sub-wavelength length scales. Supramolecular assembly provides a natural solution allowing the encoding of a desired 3D architecture into the chemical building blocks and assembly conditions. The compatibility with solution processing and low-overhead manufacturing is a significant advantage over more complex approaches such as lithography or colloidal assembly. Here we review recent advances on photonic architectures derived from block copolymers and highlight the influence and complexity of processing pathways. Notable examples that have emerged from this unique synthesis platform include Bragg reflectors, antireflective coatings, and chiral metamaterials. We further predict expanded photonic capabilities and limits of these approaches in light of future developments of the field
Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials
We explore the nonlinear optical response of 3D gyroidal metamaterials, which show >10-fold enhancements compared to all other metallic nanomaterials as well as bulk gold. A simple analytical model for this metamaterial response shows how the reflectivity spectrum scales with the metal fill fraction and the refractive index of the material that the metallic nanostructure is embedded in. The ultrafast response arising from the interconnected 3D nanostructure can be separated into electronic and lattice contributions with strong spectral dependences on the dielectric filling of the gyroids, which invert the sign of the nonlinear transient reflectivity changes. These metamaterials thus provide a wide variety of tuneable nonlinear optical properties, which can be utilised for frequency mixing, optical switching, phase modulators, novel emitters, and enhanced sensing.This is the author's accepted manuscript. The final version is available from APS in Physical Review Applied at http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.2.044002#fulltext#fulltext
Biocompatible and Sustainable Optical Strain Sensors for Large-Area Applications
By a simple two-step procedure, large photonic strain sensors using a biocompatible cellulose derivative are fabricated. Transient color shifts of the sensors are explained by a theoretical model that consideres the deformation of cholesteric domains, which is in agreement with the experimental results. The extremely simple fabrication method is suitable for both miniaturization and large-sale manufacture, taking advantage of inexpensive and sustainable materials.Biotechnology and Biological Sciences Research Council (David Phillips fellowship (Grant ID: BB/K014617/1)), The Isaac Newton Trust Cambridge (Grant ID: 76933), European Research Council (Grant ID: ERC-2014-STG H2020 639088
Bright-white beetle scales optimise multiple scattering of light.
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC grant agreement n [291349] and USAF grant FA9550-10-1-0020.This is the final published version, also available from Nature Publishing at http://www.nature.com/srep/2014/140815/srep06075/full/srep06075.html
Ultrafast nonlocal control of spontaneous emission
Solid-state cavity quantum electrodynamics systems will form scalable nodes
of future quantum networks, allowing the storage, processing and retrieval of
quantum bits, where a real-time control of the radiative interaction in the
cavity is required to achieve high efficiency. We demonstrate here the dynamic
molding of the vacuum field in a coupled-cavity system to achieve the ultrafast
nonlocal modulation of spontaneous emission of quantum dots in photonic crystal
cavities, on a timescale of ~200 ps, much faster than their natural radiative
lifetimes. This opens the way to the ultrafast control of semiconductor-based
cavity quantum electrodynamics systems for application in quantum interfaces
and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure
Role of Anisotropy and Refractive Index in Scattering and Whiteness Optimization
This is the final version. Available from Wiley via the DOI in this record.The ability to manipulate light–matter interaction to tailor the scattering properties of materials is crucial to many aspects of everyday life, from paints to lighting, and to many fundamental concepts in disordered photonics. Light transport and scattering in a granular disordered medium are dictated by the spatial distribution (structure factor) and the scattering properties (form factor and refractive index) of its building blocks. As yet, however, the importance of anisotropy in such systems has not been considered. Here, a systematic numerical survey that disentangles and quantifies the role of different kinds and degrees of anisotropy in scattering optimization is reported. It is shown that ensembles of uncorrelated, anisotropic particles with nematic ordering enables to increase by 20% the reflectance of low-refractive index media (n = 1.55), using only three-quarters of material compared to their isotropic counterpart. Additionally, these systems exhibit a whiteness comparable to conventionally used high-refractive index media, e.g., TiO2 (n = 2.60). Therefore, the findings not only provide an understanding of the role of anisotropy in scattering optimization, but they also showcase a novel strategy to replace inorganic white enhancers with sustainable and biocompatible products made of biopolymers.Biotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC)Leverhulme Trus
Structural colour in red seaweeds is more common and diverse than has been presumed
The brightest colorations observed in nature are the result of structural colour, a physical phenomenon relying not on pigments but on the interactions of light with nanostructured materials. Research on structural colour in seaweeds has been growing and hints that the phenomenon is considerably more widespread in these organisms than previously understood. In this review, we combine information from published literature, herbarium specimens and our own observations to clearly outline and reframe the current state of knowledge on the phenomenon in red seaweeds (Rhodophyta). We describe structural colour and the structures responsible for it in rhodophytes, identifying clear categories and their variations. Through an overview of the phylogenetic, geographic and ecological distribution of the phenomenon, we confirm that it is more widespread and diverse than had been indicated by casual recording. We finally discuss hypotheses on the biological significance of structural colour for red seaweeds. Our investigation emphasizes the need for more extensive research in order to fully assess the evolutionary mechanisms at play, the development of the nanostructures and their relation to environmental conditions. This review provides a framework for understanding and classifying structural colour in red algae to encourage a more comprehensive reporting of the phenomenon
Angle-resolved optical spectroscopy of photonic cellulose nanocrystal films reveals the influence of additives on the mechanism of kinetic arrest
Cellulose nanocrystals (CNCs) are rod-like nanoparticles whose chiral self-assembly into photonic films has been promoted as a sustainable source of colouration. Upon drying, an aqueous CNC suspension passes through two regimes: first, a liquid phase, where the CNCs self-organise into a cholesteric liquid crystal, followed by a kinetically-arrested phase, where the helicoidal structure compresses upon loss of solvent, resulting in a solid film with vibrant structural colour. The transition between these two regimes plays an important role in the visual appearance of photonic CNC films, but details on when and how kinetic arrest occurs have remained elusive. In this work, we combine angle-resolved optical spectroscopy of photonic films (approx. 100 vol% CNC) with a model for compressed helicoidal structures to retrieve the suspension conditions during kinetic arrest (approx. 10 vol% CNC). This analysis indicates a shift in the mechanism of kinetic arrest from a glass transition at lower ionic strength to gelation at higher ionic strength, explaining the trends in domain size and film colour. In contrast, neutral additives (glucose, poly(ethylene glycol)) appear to primarily reduce the compression upon drying without affecting cholesteric behaviour, as supported by a general analytical model. These findings deepen our understanding of CNC co-assembly with various commonly-used additives, enabling better control over the production of multifunctional structurally coloured materials
Bio-inspired Highly Scattering Networks via Polymer Phase Separation
A common strategy to optimize whiteness in living organisms consists in using three-dimensional random networks with dense and polydisperse scattering elements constituted by relatively low-refractive index materials. Inspired by these natural architectures, we developed a fast and scalable method to produce highly scattering porous polymer films via phase separation. By varying the molecular weight of the polymer, we modified the morphology of the porous films and therefore tuned their scattering properties. The achieved transport mean free paths are in the micrometer range, improving the scattering strength of analogous low-refractive index systems, e.g. standard white paper, by an order of magnitude. The produced porous films show a broadband reflectivity of approximately 75 % whilst only 4 m thick. In addition, the films are flexible and can be readily index-matched with water (i.e. they become transparent when wet), allowing for various applications such as coatings with tunable transmittance and responsive paints
- …
