694 research outputs found
Spectroscopic investigations and measurements of certain ARC jet parameters
The NASA/JSC Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) was intensively and extensively involved in ground testing of spacecraft materials and thermal protection systems (TPS) in simulated reentry conditions. Ground experiments on surface catalytic efficiency of such TPS requires a knowledge of the flow system in the arc jet. In the work described, spectroscopic diagnostic techniques are used to determine the free stream constituents. Specifically, the emission spectrum of the free stream constituents was obtained and the species therein identified. A laser system was added on, which will give the added capacity of studying the arc jet flow using Laser Raman Spectroscopy (LRS). The LRS technique will complement information obtained from the emission spectra. A short list of further work that can be done in the area of spectroscopic investigations on the arc jet is mentioned
Statistics of pressure and of pressure-velocity correlations in isotropic turbulence
Some pressure and pressure-velocity correlation in a direct numerical
simulations of a three-dimensional turbulent flow at moderate Reynolds numbers
have been analyzed. We have identified a set of pressure-velocity correlations
which posseses a good scaling behaviour. Such a class of pressure-velocity
correlations are determined by looking at the energy-balance across any
sub-volume of the flow. According to our analysis, pressure scaling is
determined by the dimensional assumption that pressure behaves as a ``velocity
squared'', unless finite-Reynolds effects are overwhelming. The SO(3)
decompositions of pressure structure functions has also been applied in order
to investigate anisotropic effects on the pressure scaling.Comment: 21 pages, 8 figur
Fluid Particle Accelerations in Fully Developed Turbulence
The motion of fluid particles as they are pushed along erratic trajectories
by fluctuating pressure gradients is fundamental to transport and mixing in
turbulence. It is essential in cloud formation and atmospheric transport,
processes in stirred chemical reactors and combustion systems, and in the
industrial production of nanoparticles. The perspective of particle
trajectories has been used successfully to describe mixing and transport in
turbulence, but issues of fundamental importance remain unresolved. One such
issue is the Heisenberg-Yaglom prediction of fluid particle accelerations,
based on the 1941 scaling theory of Kolmogorov (K41). Here we report
acceleration measurements using a detector adapted from high-energy physics to
track particles in a laboratory water flow at Reynolds numbers up to 63,000. We
find that universal K41 scaling of the acceleration variance is attained at
high Reynolds numbers. Our data show strong intermittency---particles are
observed with accelerations of up to 1,500 times the acceleration of gravity
(40 times the root mean square value). Finally, we find that accelerations
manifest the anisotropy of the large scale flow at all Reynolds numbers
studied.Comment: 7 pages, 4 figure
Effect of postural changes on normal and stenosed common carotid artery using FSI
Gravity associated with postural changes has a strong bearing on haemodynamics of blood flow in arteries. Its effect on stenosed cases has not been widely investigated. In the present study, variation observed in blood flow during postural changes is investigated for different conditions like standing, sleeping and head-down position. A fluid structure interaction study is carried out for idealized normal and 75 % eccentric and concentric stenosed common carotid normal artery. The results clearly indicate the effects of altered gravity on flow conditions. It was found to be very significant during head-down position and demonstrated very high arterial blood pressure in stenosed common carotid when compared with normal carotid
Acceleration and vortex filaments in turbulence
We report recent results from a high resolution numerical study of fluid
particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy
turnover time. We present some results concerning acceleration statistics and
the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
Contribution of N<sub>2</sub>O emissions to the atmosphere from Indian monsoonal estuaries
Estuaries are known to contribute a significant amount of nitrous oxide (N2O) to the atmosphere; however, the contribution from the Indian estuaries is unknown. We made an attempt to estimate emissions of N2O from the Indian estuaries by collecting samples from 28 major and minor estuaries along the Indian coast during the wet and dry periods. The N2O was mostly saturated in all measured Indian estuaries during the study period (72–631 %), with exceptionally high saturation in the Ponniyaar estuary (5902%) during the wet period. The N2O saturation displayed a strong relation with dissolved inorganic nitrogen (DIN; nitrate+nitrite and ammonium), ammonium and dissolved oxygen saturation, suggesting that nitrification is the major source of N2O in the Indian estuaries. The negative relation between salinity and N2O saturation suggests inner estuaries are a strong source compared to outer estuaries. The annual mean N2O saturation (204 ± 137%) and fluxes (1.3 μmol N2O m−2 d−1) in the Indian estuaries were significantly less than European estuaries (271% and ∼2.7 μmol N2O m−2 d−1, respectively). The estimation of flux of N2O from the European estuaries was also biased due to the inclusion of an exceptionally high supersaturation value from a small UK estuary, Colne (2645%). However, low N2O saturation and fluxes in the Indian estuaries were related to mean low concentration of DIN that led to low nitrification rates compared to world estuaries. Despite India ranking second in artificial fertilizers use, high flushing rates during the wet period reduce residence time leading to less modification within the estuary
- …
