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Some pressure and pressure-velocity correlations in a direct numerical simulations of a
three-dimensional turbulent flow at moderate Reynolds numbers have been analyzed. We have
identified a set of pressure-velocity correlations which possess a good scaling behavior. Such a class
of pressure-velocity correlations is determined by looking at the energy-balance across any
sub-volume of the flow. According to our analysis, pressure scaling is determined by the
dimensional assumption that pressure behaves as a ‘“velocity squared,” unless finite-Reynolds
effects are overwhelming. The $& decompositions of pressure structure functions has also been
applied in order to investigate anisotropic effects on the pressure scalin@00® American
Institute of Physicg.S1070-663(00)00607-3

I. INTRODUCTION show a quantitative disagreement with the dimensional pre-

o ) . diction p/3 for the scaling exponents. For example, the lon-
Scaling in turbulent flows is one of the most Cha”e”g'nggitudinal velocity structure functions

open issue in fluid dynamidsTypical problems concern
both the understanding of the ideal case of isotropic and  S(r)=(|(v;(x+ R)—vi(x)Ri|%)~R& P, 2
homogeneous turbulence in the limit of high-Reynolds
numberé® or more realistic and applied situations with an-
isotropic and inhomogeneous statistifsr recent examples

see Refs. 4-61n 1941, Kolmogorov, used a clever applica- :
tion of dimensional analysis to predict that the scaling of _ Many problems naturally arise as a consequence of the

velocity increments in the inertial range should have a powefailuré of the main Kolmogorov prediction. The main open

law behavior depending only on the averaged energy dissProPlem is to find an analytical way to calculate from first
pation in the flow.e. Namely, for structure function of order Principle the anomalous exponents, a problem which is still

b, i.e., thepth moment of a velocity difference across a dis- out of control except for the case of anomalous exponents
tanceR we have characterizing the statistics of passive quantities advected by

Gaussian velocity fields:'? Another interesting question,
Sy(R)=((v(x+R)—v(x))9)~ ¥R, (1)  opened by the failure of Kolmogorov dimensional predic-
tion, consists in the possibility that local observable with the
with »<r <L, wherenis the dissipative scale arg, isthe  same physical dimensions but with different tensorial struc-
typical external scale where forcing acts. Let us notice that inures have different scaling properties. About this point,
(1) we have explicitly neglected any tensorial structure in thethere are some experimental and numerical evidences regard-
velocity field such as to stress the typical dimensional charing different possible anomalous behavior of longitudinal
acter of the Kolmogorov theory, i.e., the scaling propertiesand transversal structure functidfis->even in isotropic tur-
must be the same for any observable which has the samsilence. Somehow related to this issue is also the apparent
physical dimension and which is built in terms of local field different anomalous scaling between the coarse grained av-
increments g, (X) =v(X+r)—v(X). erages of dissipative quantities like enstrophy and energy
Kolmogorov theory, as previously summarized, is quan-dissipationt® On the other hand, on the basis of a (30
titatively wrong. Experiments and numerical simulationsdecomposition of velocity correlation functions, other
authors’ claim that the supposed different scaling of quan-
aAuthor to whom correspondence should be addressed. Electronic maifities like transversal and longitudinal structure functions can
f.toschi@tn.utwente.nl only be due to spurious sub-leading nonisotropic effects, i.e.,

show a power law behavior with a set of exponefjtép)
nonlinear inp. The failure of the dimensional estimape3
goes under the name of anomalous scaling.
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in isotropic high-Reynolds numbers all components of thein a few spatial points. Moreover, in most cases, there is not
same tensorial observable should have the same—maylaeprecise control of the degree of isotropy and homogeneity
anomalous—scaling behavior. A first numerical support tan the flow. On the other hand, numerical simulations have a
this claim has been presented in the analysis of a channekrfectly controlled lay out, the velocity field is exactly
flow simulation in? known at any point, but the maximum reachable Reynolds
Even more complex is the situation when multipoint number is still order of magnitude smaller than in typical
pressure correlations is involvéd®?°Dimensionally speak- experiments/
ing pressure is just a velocity squared, and Kolmogorov-type  Nevertheless, numerical simulations, if exploited in a
argument can be easily generalized to the case of pressuciever way, are the only tool where complex measurements
structure functionsF(r). Indeed, a simple application of can be performed. Therefore, questions like the dependency

dimensional analysis leads*to of scaling properties from the tensorial nature of the observ-
able can, up to now, be investigated only in a numerical data
Fo(1)=(|P(x)— P(x+1)|9)~ 2% 2013 (B pose P J Y

where as usual, all distances are supposed to belong to the In this paper, we present a detailed analysis of pressure
inertial range of scales. Of course, intermittency will alsoscaling and pressure-velocity correlations scaling in a set of
affect pressure scaling. By following the straightforward hy-moderate Reynolds number simulations.

pothesis that pressure can be treated as a velocity squared Starting from the analysis of the energy transfer in real
one would be tempted to assign the same intermittency exspace we propose a set of pressure-velocity observable which
ponents of the velocity field to the pressure scaling, i.e., tshow better scaling properties then the usual pressure struc-
replace(3) with ture functions. We presequantitativeevidence that indeed,

L 4.(20) while pressure structure functions are strongly affected from
Fa(r)=re=, ) Reynolds numbers effects, the pressure-velocity correlation
This prediction is just a simple consequence of the asfunctions we investigated have a fairly good scaling behav-

sumptions that all velocity correlations have the same scalinipr, even at modest Reynolds numbers, in agreement with the
behavior supposed that all distances involved are in the inAypothesis that pressure “behaves” like a velocity squared.
ertial range and that the statistics is locally isotropic. Such dn order to understand whether the bad scaling behavior de-
dimensional ansatz has been questioned on the basis oftected in the pure-pressure structure functions is due to spu-
phenomenological argument in Ref. 2, some numerical supdous anisotropic sub-leading effects we also present some
port to the latter argument have been recently presented iresults on the S@) decomposition of the pressure field.
Ref. 20. The paper is organized as follows. In Sec. Il we summa-
In this paper we will mainly present some numerical fize the known analytical result which connect the second-
evidences that indeed the dimensional anéitis correct. It ~ order pressure structure function to the integral linear com-
is well-known that this must be the case at leastfer2 in  bination of fourth-order velocity correlations and the
(4). In this case, there exist an exact relatfomhich connect experimental and numerical attempts to test the relation. In
the scaling of the second-order pressure structure functiofec. Ill we introduce the set of pressure-velocity correlations
with a linear integral combination of fourth-order velocity which should have better scaling properties on the basis of a
structure functions. The problem is if the exact result can b&imple argument based on the energy transfer of Navier—
simply extrapolated to other pressure-dependent observabf&okes equations in the real space. In Sec. IV we present the
and, in the case, how strong finite-Reynolds effects can beanalysis of our numerical data base. In Sec. V we briefly
Indeed, one may argue that pressure feels strongly nonlocabmment on the analysis of nonisotropic fluctuations. Con-
effects, being just the inversion of the Poisson problem  clusions follow in Sec. VI.
—didjvjvj, and therefore, the assumptions of indepen-
dence from large scales and/or from boundary condition§; pPRESSURE STRUCTURE FUNCTIONS
may not be satisfied even at very high-Reynolds numbers. ) _
Indeed, to our knowledge, neither experimental studies nor Under the assumptions of local isotropy, local homoge-
numerical simulations have ever been able to make a firf€ity, incompressibility, and by use of Navier—Stokes equa-
quantitative statement about pressure scalmd'on one can relate the second-order pressure structure func-
properties®®~2028 pressure is also important for the under- tions, F2(r) to some fourth-order velocity structure
standing of many applied hydrodynamical problems likefunctions?* Namely
multiphase flows, flows with bubbles or sedimentafioff:
In this paper we show that it is possible to find a set ofF,(r)=— 3D1111 r)+ J' y 3[D1111(y)+DBﬂﬁﬁ(y)
velocity-pressure observable which have indeed a quite good
scaling behavior in agreement with the dimensional ansatz 4 (r
(4) also at moderate Reynolds numbers. —6D11w]dy+§f Y D gpppy)—3D11,,1dy,
Scaling in turbulence is particularly difficult to test in 0
both experiments and numerical simulations. Experiments (5)
reach high-Reynolds numbers by paying the price to have &nere the fourth-order structure function is
very limited set of information on the whole velocity fields,
typically only a long time series of one velocity components  Dijii (1) ={(Ui—u)(u; = uj) (uy— t) (uy —uy)),
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and where for simplicity we have used primed variables to

express velocities at the positiah=x+r and wherd,jk,lis  EvT fvvi(x)vj(x)ajvi(x)dx+ fvvi(x)f?ip(x)dx

1 if the velocity component is parallel to the separation vec-

tor, 7, and 2, 3 otherwise. Subscripss y denote either 2 or

3. Of course,(5) implies that whenever the fourth-order :vavi(X)Avi(X)dx' (6)
structure functions entering in the above expressions are all

dominated by the inertial-range intermittent scaling behaviorwhere withEy, = 3/ dxvv; we denote the total energy in the
Dijk I(r)~r§u(4), then also the second-order pressure strucsub-volumeV. Let us notice that the two terms in the lhs of

ture functions should scale with the exponetis(2) (6) can be obviously written as the fluxes across the bound-
=¢,(4). Relation(5) have been carefully tested in numerical aries ofV by using Gauss theorem
simulations without any appreciable deviatidfs® Never-
theless, the overall scaling behavior of the pressure structurf
function is very poor. Similarly, the analysis of experimental ¥V
data® does not show any power law behavior for the pres- — 2
. : =Pgq (V09), 7
sure structure functions even if the Reynolds number was v
extremely high (Rg~10000). In the latter case, authors
tried to explain the difference between pressure scaling qual{ vi(X)d; P(X)dXEJ dXnivi(x)P(x)=dg (VP),  (8)
ity and velocity scaling quality by invoking a possible dif- v
ferent scaling for the different velocity correlations enteringwhere withn; we denote the unit vector perpendicular to the
in the rhs(right-hand sidgof (5), leading to the final predic- infinitesimal surface on the boundaries \6f Rewritten in
tion that pressure structure functions is made in terms ofhis way, relation(6) is just a simple restatement of the con-
different power law contributions with slightly different ex- servation of energy: The total energy change inside a volume
ponents. The resulting superposition of power laws would bgs given by the flux across the volume surface and by the
the responsible of the poor observed scaling behavior. Thisnergy dissipation inside the volume. Let us now use this
statement would contradict the theoretical prediction made igimple fact in order to extract some useful considerations
terms of the S@) decomposition which forbids different about scaling properties of velocity-pressure correlations. Let
component of the same tensorial observable to scale diffetys consider a very particular class of voluvegi.e., a cyl-
ently in a isotropic ensemble. inder with an infinitesimal squared basis of surfatand
Another interesting remark consists in the strong cancelwith a finite axis in the direction dR. In the limit when the
lation among the different contribution @6) observed in  basis becomes smaller and smaller, the flux across the lateral
numerical simulation$®'° The Ihs(left-hand sidg of (5) is  sides goes to zero because contributions from two opposite
more then an order of magnitude smaller than the singlevalls are equal but with different signs. The only contribu-
different contributions entering in the rhs. One, cannot extions to the total flux come from the two infinitesimal basis
cludea priori the possibility that there exist an almost per- and can be written as
fect cancellation of all leading scaling terms of all contribu- R
tion appearing in the rhs of5), even if such a perfect D (V0?)=8(vi(x)v*(X) —vi(x+R)v*(X+R))R;, (9)
cancellation would call for some unknown physical interpre-
tation.
More probably, the cancellation is not perfect but strong ®q (VP)=8(vi(X)P(X)—v;(x+R)P(Xx+R))R;, (10)
enough to hide completely the pressure scaling at the avail- v
able experimental and numerical Reynolds numbers. for the flux involving pressure-velocity correlations. In both
On the other hand, the possibility that pressure-cases we have exploited the fact that the two infinitesimal
increments behave as velocity-incrememiB~ dv, instead basis are centered and inx+R, i.e., their unit vector is
than as a velocity-increment squared has been recentlyriented alongR. Similarly the two volume integral giving
proposed® This would violate the exact results previously the time variation of the total energy and the energy dissipa-
reported and, therefore, cannot be correct unless strong ation becomes two linear integral times the infinitesimal basis
isotropic effects are present at all scales. area 8:9,(8frdsv3(x)) and (8frdsv;(X)Avi(x)) respec-
In order to better assess the pressure statistical propertigéigely, where withds we parameterized the segment going
we present in the following, some results for pressurefrom x to x+ R.
dependent observable. This observable do not possess the Let us now assume that all the four observable entering
strong cancellation properties showed by structure functionin the energy balance have the same statistical behavior. This
is somehow a “local Kolmogorov refined hypothesis:” We
link the scaling of the local energy dissipation to the scaling
of some particular third-order velocity correlation and to the
IIl. PRESSURE-VELOCITY CORRELATION scaling of a velocity-pressure correlation. The claim is, there-
fore, that the particular structure functions emerging from
Let us start by looking at the energy balance inside anyur flux analysis should scale exactly like the coarse grained
volumeV of the flow. From the Navier—StokdslS) equa- energy dissipation, i.e., should have an anomalous scaling
tions we obviously have like the usual longitudinal structure functions which satisfy

1
Ui(X)Uj(X)&jUi(X)dXEEJQVdEnjvj(X)UZ(X)

for the flux involving the velocity correlation and as
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FIG. 2. ESS log—log plot 085"*(R) vs S2*(R), (+); SS°(R) vs StP(R),
(x); S5(R) vs S{(R), (X); superimposed are the straight lines with the
t?’lsotropic and homogeneous high-Reynolds slafjé;}=1.92.

FIG. 1. Log—log plot ofF,(R) (+) and of S,(R), (X). Notice that the
pressure structure function is about three times smaller than the veloci
structure function at large scale.

the original Kolmogorov Refined Hypothesis. In the NeXtplent flows?® ESS consists in looking for relative scaling of

s:eqtlon we present some numerical data in support of th'ﬁ/\/o different observable. Usually, one takes two structure
claim. functions of two different orders, i.e., in the case of longitu-

dinal structure function;(R)~[S;, (R)]%(®/4.(@"),
IV. NUMERICAL ANALYSIS Let us now define the same relative scaling for the two
The data set we are going to analyze has been obtaindtfneralized structure functions defined(irl).
from a direct numerical integration of NS equations using a
pseudo-spectral method with dealiazing on a grid of3128
oints. The forcing was implemented isotropically on all /
\F/)vave vectors witH lg|<1 suchpas to enforce tHE.a*y3 Zpec— 8§ (R)~[ S (R)Jeeel@eoplal,
trum at small wave vectors.We have analyzed about 100 |p, Fig. 2, we show the ESS plot for the two generalized
configurations stored each eddy-turn over time. The simulastructure functions and for the usual longitudinal structure
tion has a Reynolds=70. The ratio between the highest re- fynctions, respectively, witq=1, g’ =2. As one can see all
solved wave numbek,, and the Kolmogorov scalk, is  the ESS plots showed a scaling behavior consistent with the
Kmax/k,=1.5, which is within the usual accepted range toysyal homogeneous and isotropic high Reynolds value which

UU2 UU2 / ’
Sy (R)~[Sy7 (R)Jéwe@ewstan),
(12)

ensure a stable cod_e and a fairly good resolution. give for the relative exponentg; (2)/¢,(1)=1.92+0.0228
Let us denote with: Similar agreements are found for higher-order moméms
v2 _ . 2 o 2 5. [a/3 showed.
8" (RI=(lWi)p*(x) —vi(x+R)p*(x+R)R| >(’11) The scaling ansatz assumed for the generalized structure

functions seems, therefore, quite well satisfied. These find-
ings support the fact that pressure does not behave abnor-
the two different structure fUnCtionS Wh|Ch can be made |nma||y as far as |ts “dimensiona'” Sca”ng properties are con-
terms of the two flux quantities defined in the previous seCtemed. Indeed, pressure-velocity correlations behaves
tion. Let us notice that i11) bothS” (R) andsgP(R) have exactly like velocity—velocity correlations once pressure is
been defined as th@/3 power of the original fluxes such as counted as a “velocity squared.” Nevertheless, the only re-
to have the same dimensions $f(R). alistic way to perform a quantitative statement about scaling
Let us start by showing in Fig. 1 the strong cancellationexponents is to study the logarithmic local slopes(L).
effects present in the pressure structure functfey() with  Only when logarithmic local slopes show a fairly constant
respect to the velocity longitudinal structure functions withbehavior one can really speak about scaling. In Fig. 3 we
the same physical dimensio§,(R). In Fig. 1 we show the show the logarithmic local slopes ¢12) for q=1, q'=2
log—log plot of F{(R) and of S;(R), as one can see the together with the corresponding quantities measure for the
overall amplitude of pressure fluctuations is about thredongitudinal velocity structure functions. In order to show
times smaller than the velocity fluctuations. This is just tothat the hypothesis that pressure-increments behave as a lin-
confirm that pressure by itself is a much weaker signal tharar velocity-incrementsP~ dv, is definitely ruled out by
the usual velocity correlations. our data we also show in Fig. 3 the logarithmic local slope of
As one can see in Fig. 1 the scaling is quite poor, as onthe ESS applied to pressure structure-functions derl,
can expect in any DNSdirect numerical simulation As  q'=2. As one can see, while the three slopes measured on
usual, in order to extract quantitative statement about scalinthe flux structure functions and on the longitudinal structure
exponents one has to exploit the extended self similaritfunctions agree perfectly with the high-Reynolds numbers
(ESS property enjoyed by homogeneous and isotropic turmeasurements, the pure-pressure structure functions is defi-

SiP(R)=(|(0i(\)P(X) —vi(x+R)P(x+ R)R|¥3),
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2.2 T — T T T T T T 1 physical dimensions and built in terms of local field incre-
ments scale in the same way. On the other hések Fig. 4
2 g, o - pure-pressure structure functions seem to violate the previ-
- R R AL ous statement despite of the fact that in this case there even
1.8 *‘E = exist an exact resul(5) supporting it. Why pure-pressure
Wﬁﬁ correlations show this strong deviation from the straightfor-
1.6 | . ward dimensional estimate? One possible explanation is con-
nected to the—possible—lack of isotropy in the statistics.
14} - Any isotropically forced DNS is affected by possible noniso-
tropic fluctuations induced by the discretization of the nu-
12 N S S [N Y SUSSU NS—— E— — merical grid. In the following section we have analyzed
0 5 10 15 20 25 R30 3% 40 45 50 55 nonisotropic effects on both velocity and pressure fluctua-
tions.

FIG. 3. Logarithmic local slope of*) S;”z(R) Vs S’;',’Z(R); (O) SgP(R) Vs
S';,P(R); (X) S4(R), vs S,(R), for =2 andg’'=1. Notice that all the V. ANISOTROPIC EFFECTS

above values are in perfect agreement with the high-Reynolds number value ) .
1.92 (straight ling, while the logarithmic local slope for the pure-pressure The exact relation which connect the second-order pres-

structure functions=5,(R) vs F4(R), (+) is different. The error bars are  sure structure function with a linear integral combination of
estimated by looking at the fluctuations over the first half and the seconqourth_order velocity structure functio(r5) is correct only in
half of the whole set of configurations. . .
the isotropic and homogeneous case. In order to test the de-
gree of isotropy of our simulation we have proceeded in a

nitely much poorer. In Fig. 4 we plot the same as Fig. 3 putSystematic decomposition in terms of the irreducible repre-
for a different choice of momentsj=2, q’=4, for both  Sentations of the S@) symmetry groud:>*"The SQ3) de-

fluxes and longitudinal structure functions and wkr 1, composition is particularly simple to apply to scalar observ-

q' =2 for the pure pressure structure functions. In this Wayable, i.e., observable with all vectorial indexes contracted,

we are comparing quantities with exactly the same dimenlike pressure structure functions or longitudinal structure

sional properties. Again, while the flux-made structure func-funCtlons on the kind analyzed in this work. In these case,

. P 2 - _ the S@3) decomposition is nothing but a decomposition in
t!ons, Sy (R),5" (R) and the longitudinal structure func spherical harmonics. For example, the longitudinal structure
tions, S;(R) have the same local slope the pure-pressu

re i ° .
result obtained on the ESS &,(R) shows a poorer and ?unCt'onS'Sq(R)_«vi(X"'R) vi(x))Ri)%, can be decom-

different scaling. posed as

A few comments are now in order. On one hand, we see . Im .
from Figs. 3 and 4 that the simple local-refined Kolmogorov Sq(R)EJ.Em qu (R)Yjm(R), (13
hypothesis derived in the previous section is correct, i.e.,
fluxes (11) have the same sca”ng properties of the usuaWhere now, we have eXpIICItIy considered the pOSSlb”lty that
longitudinal structure function in homogeneous and isotropidhe undecomposed structure functions depend on the whole

turbulence, confirming that these observable with the samiéector R and not only on its magnitude as in the previous
sections when isotropy was assumed. The coefficient of the

decompositionSJdm(R) depend only on the magnitude Bf

2.2 — — T T and on the two “quantum” numbergm which labels the
properties under rotations of thé;,, eigenfunction. Obvi-
2 - ously, in the case of perfect isotropy we would have only one
E_‘:;-;%ﬂ@ projection alive, i.e., the projection OYiy,. The SA3) de-
18 RS - composition here summarized has been already used in some
experimental and numerical data analysis to properly disen-
16 F i tangle the anisotropic effects from the isotropic ofh&s1’
In our case, the relative amplitudesﬁﬂ(|R|) with respect
14k . to the anisotropic fluctuation§{"(|R|) with j>0,—j=m
<j, gives a direct quantitative estimate of the degree of
1.9 Coo anisotropic fluctuations for any scalg. In Fig. 5 we show
6 5 10 15 20 25 30 35 40 45 30 55 the log—log plot of the undecomposed second-order longitu-

dinal structure functions and of its projection on the fully
FIG. 4. Logarithmic local slopes oft]) Sg”z(R) vsSZ?Z(R); () SP(R) vs |sotroplc elge_nfunct_|orY00. A_s it is p955|blg to see,_d_esp@e
SIT(R); (X) Si(R), vs S (R), for g=4 andg’ =2. Notice that, as in Fig. of the isotropic forcing used in the _S|mulat!on, the f_|n|t_e-S|ze
2, the flux-based structure functions have the same scaling behavior of theffects introduced by our computational grid are quite impor-
longitudinal structure function in agreement with the high-Reynolds regimetgnt at large scales: The projectmgo(|R|), shows a defi-

(straight ling. Here we present a comparison with the Pressure structure o hetter scaling than the undecomposed structure func-
function with the same physical dimensions of the flux-based structure func-

tions, i.e.,F,(R) vs F(r), (+), still the pure-pressure structure function ti(_)n alread_y as a func_tion of th_e real separati@ni.e.,
seems to have a different local slope. without using ESS. This dramatic effect was already ob-

Downloaded 04 Jan 2010 to 131.155.151.137. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 12, No. 7, July 2000 Statistics of pressure and of pressure-velocity . . . 1841

tions cannot be responsible for the poor scaling observed in
T R the previous sections for the pure-pressure structure func-
] tions.
The only possibility to reconcile the exact res{@} with
the poor scaling agreement between pressure structure func-
tions and velocity structure functions is, in our opinion, to
invoke strong Reynolds effects, i.e., in order to see a good
scaling for pressure one needs to go to very high Reynolds.
Indeed, the resolution of the Poisson problem certainly intro-
duces strong nonlocal effects on the statistics. Nonlocality
may also translate in strong long-range effects in the Fourier
101100 —— ‘1[')1 T space as far as the importance of boundary conditions and
R forcing on the inertial range properties are concerned. If this
is correct, there is no reason to expect good scaling proper-
FIG. 5. Undecomposed second-order velocity structure funct@t®)  ties for pure-pressure correlations, unless the Reynolds num-

. iacti 0 L . .
measured on the planey, (x); and the projectionS(R) (+), on the oy ig high enough to recover also in laboratory experiments
isotropic eigenfunction. The straight line has the high-Reynolds sigpe an almost “infinite” inertial range extension
=0.7. Notice that already in the-space, the S@) decomposition improve 9 ’
the overall scaling behavior. The two curves have been shifted along the

axis for the sake of presentation. VI. CONCLUSIONS
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We have analyzed some pressure and pressure-velocity
served in a similar application to the decomposition of ve-correlations in a Direct Numerical Simulations at moderate
locity fluctuations inside a chann&Figure 5 definitely show Reynolds numbers. We have derived on the basis of a simple
that the S@) decomposition can help in cleaning scaling analysis of energy transfer properties across any sub-volume
properties also in “quasi-isotropic” simulations. in the real Space what we call a “local” -Refined Kolmog—

On the other hand, the situation is quite different whenorov Hypothesis. We have identified a set of pressure-
the same decomposition is applied to the pressure structuMglocity correlations which should have a good scaling be-

functions havior because connected via the local-RKH to the scaling of
the energy dissipation coarse grained on inertial range scales.

FYR)=D, FIN(R)Y:(R). (14) We have showed that our scaling hypothesis is well veri-

a m . fied, while pure pressure correlations feel strong Reynolds

Let us notice that pressure is a quasi-isotropic observablgffécts. According to our analysis pressure scaling is per-

also for strong anisotropic velocity configuration. Indeed, bef€Ctly determined by the dimensional assumption that pres-
velocity squared,” unless the finite-

ing the solutions of a Poisson problem, pressure is always art'r® blihavf?s as a helmi q find :
average of velocity fluctuations on all spatial directions. ThisReynolds effects are overwhelming. We do not find any sign

simple considerations is perfectly verified on our numerical’Vhich could support the fact that pressure differences behave

simulation. In Fig. 6 we show the undecomposed second@S Velocity differences as proposed in Ref. 20.

order pressure structure function together with its projection We have also applu_ad th_e $8) decompositions to the
00(R). One can hardly pressure structure functions in order to show that poor scal-

on the fully isotropic harmonicsf, ! . h d b f :
detect any differences, suggesting that anisotropic fluctudld Properties showe 0y pure-pressure structure functions
are not connected to anisotropic fluctuations.
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