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Some pressure and pressure-velocity correlations in a direct numerical simulations of a
three-dimensional turbulent flow at moderate Reynolds numbers have been analyzed. We have
identified a set of pressure-velocity correlations which possess a good scaling behavior. Such a class
of pressure-velocity correlations is determined by looking at the energy-balance across any
sub-volume of the flow. According to our analysis, pressure scaling is determined by the
dimensional assumption that pressure behaves as a ‘‘velocity squared,’’ unless finite-Reynolds
effects are overwhelming. The SO~3! decompositions of pressure structure functions has also been
applied in order to investigate anisotropic effects on the pressure scaling. ©2000 American
Institute of Physics.@S1070-6631~00!00607-3#
ng

an
lds
n-

a-
o

we
iss
r
is-

t
th
a
ie
am
ld

n
ns

re-
n-

the
n
st
till
nts

d by
,
ic-
he
uc-
nt,
ard-
al

rent
av-
rgy

er
n-
an
i.e.,

ma
I. INTRODUCTION

Scaling in turbulent flows is one of the most challengi
open issue in fluid dynamics.1 Typical problems concern
both the understanding of the ideal case of isotropic
homogeneous turbulence in the limit of high-Reyno
numbers2,3 or more realistic and applied situations with a
isotropic and inhomogeneous statistics~for recent examples
see Refs. 4–6!. In 1941, Kolmogorov, used a clever applic
tion of dimensional analysis to predict that the scaling
velocity increments in the inertial range should have a po
law behavior depending only on the averaged energy d
pation in the flow,e. Namely, for structure function of orde
p, i.e., thepth moment of a velocity difference across a d
tanceR we have

Sq~R!5^~v~x1R!2v~x!!q&;eq/3Rq/3, ~1!

with h!r !L0 whereh is the dissipative scale andL0 is the
typical external scale where forcing acts. Let us notice tha
~1! we have explicitly neglected any tensorial structure in
velocity field such as to stress the typical dimensional ch
acter of the Kolmogorov theory, i.e., the scaling propert
must be the same for any observable which has the s
physical dimension and which is built in terms of local fie
increments,d rv(x)5v(x1r )2v(x).

Kolmogorov theory, as previously summarized, is qua
titatively wrong. Experiments and numerical simulatio

a!Author to whom correspondence should be addressed. Electronic
f.toschi@tn.utwente.nl
1831070-6631/2000/12(7)/1836/7/$17.00
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show a quantitative disagreement with the dimensional p
diction p/3 for the scaling exponents. For example, the lo
gitudinal velocity structure functions

Sq
v~r !5^u~v i~x1R!2v i~x!!R̂i uq&;Rzv~p!, ~2!

show a power law behavior with a set of exponentszv(p)
nonlinear inp. The failure of the dimensional estimatep/3
goes under the name of anomalous scaling.

Many problems naturally arise as a consequence of
failure of the main Kolmogorov prediction. The main ope
problem is to find an analytical way to calculate from fir
principle the anomalous exponents, a problem which is s
out of control except for the case of anomalous expone
characterizing the statistics of passive quantities advecte
Gaussian velocity fields.7–12 Another interesting question
opened by the failure of Kolmogorov dimensional pred
tion, consists in the possibility that local observable with t
same physical dimensions but with different tensorial str
tures have different scaling properties. About this poi
there are some experimental and numerical evidences reg
ing different possible anomalous behavior of longitudin
and transversal structure functions13–15even in isotropic tur-
bulence. Somehow related to this issue is also the appa
different anomalous scaling between the coarse grained
erages of dissipative quantities like enstrophy and ene
dissipation.16 On the other hand, on the basis of a SO~3!
decomposition of velocity correlation functions, oth
authors17 claim that the supposed different scaling of qua
tities like transversal and longitudinal structure functions c
only be due to spurious sub-leading nonisotropic effects,
il:
6 © 2000 American Institute of Physics
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in isotropic high-Reynolds numbers all components of
same tensorial observable should have the same—m
anomalous—scaling behavior. A first numerical support
this claim has been presented in the analysis of a cha
flow simulation in.4

Even more complex is the situation when multipo
pressure correlations is involved.2,19,20Dimensionally speak-
ing pressure is just a velocity squared, and Kolmogorov-t
argument can be easily generalized to the case of pres
structure functions,Fq(r ). Indeed, a simple application o
dimensional analysis leads to21

Fq~r ![^uP~x!2P~x1r !uq&;e2q/3r 2q/3, ~3!

where as usual, all distances are supposed to belong to
inertial range of scales. Of course, intermittency will al
affect pressure scaling. By following the straightforward h
pothesis that pressure can be treated as a velocity squ
one would be tempted to assign the same intermittency
ponents of the velocity field to the pressure scaling, i.e.
replace~3! with

Fq~r !;r zv~2q!. ~4!

This prediction is just a simple consequence of the
sumptions that all velocity correlations have the same sca
behavior supposed that all distances involved are in the
ertial range and that the statistics is locally isotropic. Suc
dimensional ansatz has been questioned on the basis
phenomenological argument in Ref. 2, some numerical s
port to the latter argument have been recently presente
Ref. 20.

In this paper we will mainly present some numeric
evidences that indeed the dimensional ansatz~4! is correct. It
is well-known that this must be the case at least forq52 in
~4!. In this case, there exist an exact relation22 which connect
the scaling of the second-order pressure structure func
with a linear integral combination of fourth-order veloci
structure functions. The problem is if the exact result can
simply extrapolated to other pressure-dependent observ
and, in the case, how strong finite-Reynolds effects can
Indeed, one may argue that pressure feels strongly nonl
effects, being just the inversion of the Poisson problemDP
52] i] jv iv j , and therefore, the assumptions of indepe
dence from large scales and/or from boundary conditi
may not be satisfied even at very high-Reynolds numb
Indeed, to our knowledge, neither experimental studies
numerical simulations have ever been able to make a
quantitative statement about pressure sca
properties.18–20,26 Pressure is also important for the unde
standing of many applied hydrodynamical problems l
multiphase flows, flows with bubbles or sedimentation.23,24

In this paper we show that it is possible to find a set
velocity-pressure observable which have indeed a quite g
scaling behavior in agreement with the dimensional ans
~4! also at moderate Reynolds numbers.

Scaling in turbulence is particularly difficult to test i
both experiments and numerical simulations. Experime
reach high-Reynolds numbers by paying the price to hav
very limited set of information on the whole velocity field
typically only a long time series of one velocity componen
Downloaded 04 Jan 2010 to 131.155.151.137. Redistribution subject to A
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in a few spatial points. Moreover, in most cases, there is
a precise control of the degree of isotropy and homogen
in the flow. On the other hand, numerical simulations hav
perfectly controlled lay out, the velocity field is exact
known at any point, but the maximum reachable Reyno
number is still order of magnitude smaller than in typic
experiments.27

Nevertheless, numerical simulations, if exploited in
clever way, are the only tool where complex measureme
can be performed. Therefore, questions like the depende
of scaling properties from the tensorial nature of the obse
able can, up to now, be investigated only in a numerical d
base.

In this paper, we present a detailed analysis of press
scaling and pressure-velocity correlations scaling in a se
moderate Reynolds number simulations.

Starting from the analysis of the energy transfer in r
space we propose a set of pressure-velocity observable w
show better scaling properties then the usual pressure s
ture functions. We presentquantitativeevidence that indeed
while pressure structure functions are strongly affected fr
Reynolds numbers effects, the pressure-velocity correla
functions we investigated have a fairly good scaling beh
ior, even at modest Reynolds numbers, in agreement with
hypothesis that pressure ‘‘behaves’’ like a velocity squar
In order to understand whether the bad scaling behavior
tected in the pure-pressure structure functions is due to
rious anisotropic sub-leading effects we also present so
results on the SO~3! decomposition of the pressure field.

The paper is organized as follows. In Sec. II we summ
rize the known analytical result which connect the seco
order pressure structure function to the integral linear co
bination of fourth-order velocity correlations and th
experimental and numerical attempts to test the relation
Sec. III we introduce the set of pressure-velocity correlatio
which should have better scaling properties on the basis
simple argument based on the energy transfer of Navi
Stokes equations in the real space. In Sec. IV we presen
analysis of our numerical data base. In Sec. V we brie
comment on the analysis of nonisotropic fluctuations. C
clusions follow in Sec. VI.

II. PRESSURE STRUCTURE FUNCTIONS

Under the assumptions of local isotropy, local homog
neity, incompressibility, and by use of Navier–Stokes eq
tion, one can relate the second-order pressure structure f
tions, F2(r ), to some fourth-order velocity structur
functions.22 Namely

F2~r ![2
1

3
D1111~r !1

4

3
r 2E

r

`

y23@D1111~y!1Dbbbb~y!

26D11gg#dy1
4

3E0

r

y21@Dbbbb~y!23D11gg#dy,

~5!

where the fourth-order structure function is

Di jkl ~r ![^~ui2ui8!~uj2uj8!~uk2uk8!~u12u18!&,
IP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1838 Phys. Fluids, Vol. 12, No. 7, July 2000 Biferale, Gualtieri, and Toschi
and where for simplicity we have used primed variables
express velocities at the positionx85x1r and wherei,j,k,l is
1 if the velocity component is parallel to the separation v
tor, r¢, and 2, 3 otherwise. Subscriptsb, g denote either 2 or
3. Of course,~5! implies that whenever the fourth-orde
structure functions entering in the above expressions ar
dominated by the inertial-range intermittent scaling behav
Di , j ,k,l(r );r zv(4), then also the second-order pressure str
ture functions should scale with the exponentzp(2)
5zv(4). Relation~5! have been carefully tested in numeric
simulations without any appreciable deviations.18,19 Never-
theless, the overall scaling behavior of the pressure struc
function is very poor. Similarly, the analysis of experimen
data18 does not show any power law behavior for the pr
sure structure functions even if the Reynolds number w
extremely high (Rel;10 000). In the latter case, autho
tried to explain the difference between pressure scaling q
ity and velocity scaling quality by invoking a possible di
ferent scaling for the different velocity correlations enteri
in the rhs~right-hand side! of ~5!, leading to the final predic-
tion that pressure structure functions is made in terms
different power law contributions with slightly different ex
ponents. The resulting superposition of power laws would
the responsible of the poor observed scaling behavior. T
statement would contradict the theoretical prediction mad
terms of the SO~3! decomposition which forbids differen
component of the same tensorial observable to scale di
ently in a isotropic ensemble.

Another interesting remark consists in the strong can
lation among the different contribution of~5! observed in
numerical simulations:18,19 The lhs~left-hand side! of ~5! is
more then an order of magnitude smaller than the sin
different contributions entering in the rhs. One, cannot
cludea priori the possibility that there exist an almost pe
fect cancellation of all leading scaling terms of all contrib
tion appearing in the rhs of~5!, even if such a perfec
cancellation would call for some unknown physical interp
tation.

More probably, the cancellation is not perfect but stro
enough to hide completely the pressure scaling at the a
able experimental and numerical Reynolds numbers.

On the other hand, the possibility that pressu
increments behave as velocity-increments,dP;dv, instead
than as a velocity-increment squared has been rece
proposed.20 This would violate the exact results previous
reported and, therefore, cannot be correct unless strong
isotropic effects are present at all scales.

In order to better assess the pressure statistical prope
we present in the following, some results for pressu
dependent observable. This observable do not posses
strong cancellation properties showed by structure functi

III. PRESSURE-VELOCITY CORRELATION

Let us start by looking at the energy balance inside a
volumeV of the flow. From the Navier–Stokes~NS! equa-
tions we obviously have
Downloaded 04 Jan 2010 to 131.155.151.137. Redistribution subject to A
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] tEV1E
V
v i~x!v j~x!] jv i~x!dx1E

V
v i~x!] i P~x!dx

5nE
V
v i~x!Dv i~x!dx, ~6!

where withEV5 1
2*V dxv iv i we denote the total energy in th

sub-volumeV. Let us notice that the two terms in the lhs
~6! can be obviously written as the fluxes across the bou
aries ofV by using Gauss theorem

E
V
v i~x!v j~x!] jv i~x!dx[

1

2EVV
dSnjv j~x!v2~x!

[FVV
~vv2!, ~7!

E
V
v i~x!] i P~x!dx[E

VV

dSniv i~x!P~x![FVV
~vP!, ~8!

where withni we denote the unit vector perpendicular to t
infinitesimal surface on the boundaries ofV. Rewritten in
this way, relation~6! is just a simple restatement of the co
servation of energy: The total energy change inside a volu
is given by the flux across the volume surface and by
energy dissipation inside the volume. Let us now use t
simple fact in order to extract some useful consideratio
about scaling properties of velocity-pressure correlations.
us consider a very particular class of volumeV, i.e., a cyl-
inder with an infinitesimal squared basis of surfaced and
with a finite axis in the direction ofR. In the limit when the
basis becomes smaller and smaller, the flux across the la
sides goes to zero because contributions from two oppo
walls are equal but with different signs. The only contrib
tions to the total flux come from the two infinitesimal bas
and can be written as

FVV
~vv2!5d~v i~x!v2~x!2v i~x1R!v2~x1R!!R̂i , ~9!

for the flux involving the velocity correlation and as

FVV
~vP!5d~v i~x!P~x!2v i~x1R!P~x1R!!Ri , ~10!

for the flux involving pressure-velocity correlations. In bo
cases we have exploited the fact that the two infinitesim
basis are centered inx and inx1R, i.e., their unit vector is
oriented alongR̂. Similarly the two volume integral giving
the time variation of the total energy and the energy dissi
tion becomes two linear integral times the infinitesimal ba
area d:] t(d*Rdsv2(x)) and (d*Rdsv i(x)Dv i(x)) respec-
tively, where withds we parameterized the segment goi
from x to x1R.

Let us now assume that all the four observable enter
in the energy balance have the same statistical behavior.
is somehow a ‘‘local Kolmogorov refined hypothesis:’’ W
link the scaling of the local energy dissipation to the scal
of some particular third-order velocity correlation and to t
scaling of a velocity-pressure correlation. The claim is, the
fore, that the particular structure functions emerging fro
our flux analysis should scale exactly like the coarse grai
energy dissipation, i.e., should have an anomalous sca
like the usual longitudinal structure functions which satis
IP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1839Phys. Fluids, Vol. 12, No. 7, July 2000 Statistics of pressure and of pressure-velocity . . .
the original Kolmogorov Refined Hypothesis. In the ne
section we present some numerical data in support of
claim.

IV. NUMERICAL ANALYSIS

The data set we are going to analyze has been obta
from a direct numerical integration of NS equations usin
pseudo-spectral method with dealiazing on a grid of 13

points. The forcing was implemented isotropically on
wave vectors withuku,1 such as to enforce thek25/3 spec-
trum at small wave vectors.25 We have analyzed about 10
configurations stored each eddy-turn over time. The sim
tion has a Reynoldsl570. The ratio between the highest r
solved wave numberkmax and the Kolmogorov scalekh is
Kmax/kh51.5, which is within the usual accepted range
ensure a stable code and a fairly good resolution.

Let us denote with:

Sq
vv2

~R!5^u~v i~x!v2~x!2v i~x1R!v2~x1R!!R̂i uq/3&,
~11!

Sq
vP~R!5^u~v i~x!P~x!2v i~x1R!P~x1R!!R̂i uq/3&,

the two different structure functions which can be made
terms of the two flux quantities defined in the previous s

tion. Let us notice that in~11! bothSq
vv2

(R) andSq
vP(R) have

been defined as theq/3 power of the original fluxes such a
to have the same dimensions ofSq

v(R).
Let us start by showing in Fig. 1 the strong cancellati

effects present in the pressure structure functionsFq(R) with
respect to the velocity longitudinal structure functions w
the same physical dimensionsS2q

v (R). In Fig. 1 we show the
log–log plot of F1(R) and of S2(R), as one can see th
overall amplitude of pressure fluctuations is about th
times smaller than the velocity fluctuations. This is just
confirm that pressure by itself is a much weaker signal t
the usual velocity correlations.

As one can see in Fig. 1 the scaling is quite poor, as
can expect in any DNS~direct numerical simulation!. As
usual, in order to extract quantitative statement about sca
exponents one has to exploit the extended self simila
~ESS! property enjoyed by homogeneous and isotropic t

FIG. 1. Log–log plot ofF1(R) ~1! and of S2(R), ~3!. Notice that the
pressure structure function is about three times smaller than the vel
structure function at large scale.
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bulent flows.28 ESS consists in looking for relative scaling o
two different observable. Usually, one takes two struct
functions of two different orders, i.e., in the case of longit
dinal structure functionsSq

v(R);@Sq8
v (R)#zv(q)/zv(q8).

Let us now define the same relative scaling for the t
generalized structure functions defined in~11!.

Sq
vv2

~R!;@Sq8
vv2

~R!#zvv2~q!/zvv2~q8!,

~12!
Sq

vP~R!;@Sq8
vP

~R!#zvP~q!/zvP~q8!.

In Fig. 2, we show the ESS plot for the two generaliz
structure functions and for the usual longitudinal structu
functions, respectively, withq51, q852. As one can see al
the ESS plots showed a scaling behavior consistent with
usual homogeneous and isotropic high Reynolds value wh
give for the relative exponents:zv(2)/zv(1)51.9260.02.28

Similar agreements are found for higher-order moments~not
showed!.

The scaling ansatz assumed for the generalized struc
functions seems, therefore, quite well satisfied. These fi
ings support the fact that pressure does not behave ab
mally as far as its ‘‘dimensional’’ scaling properties are co
cerned. Indeed, pressure-velocity correlations beha
exactly like velocity–velocity correlations once pressure
counted as a ‘‘velocity squared.’’ Nevertheless, the only
alistic way to perform a quantitative statement about sca
exponents is to study the logarithmic local slopes of~12!.
Only when logarithmic local slopes show a fairly consta
behavior one can really speak about scaling. In Fig. 3
show the logarithmic local slopes of~12! for q51, q852
together with the corresponding quantities measure for
longitudinal velocity structure functions. In order to sho
that the hypothesis that pressure-increments behave as
ear velocity-increment,dP;dv, is definitely ruled out by
our data we also show in Fig. 3 the logarithmic local slope
the ESS applied to pressure structure-functions forq51,
q852. As one can see, while the three slopes measured
the flux structure functions and on the longitudinal structu
functions agree perfectly with the high-Reynolds numb
measurements, the pure-pressure structure functions is

ity

FIG. 2. ESS log–log plot ofS2
vv2

(R) vs S1
vv2

(R), ~1!; S2
vP(R) vs S1

vP(R),
~!!; S2

v(R) vs S1
v(R), ~3!; superimposed are the straight lines with th

isotropic and homogeneous high-Reynolds slope,z2
v/z1

v51.92.
IP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1840 Phys. Fluids, Vol. 12, No. 7, July 2000 Biferale, Gualtieri, and Toschi
nitely much poorer. In Fig. 4 we plot the same as Fig. 3
for a different choice of moments,q52, q854, for both
fluxes and longitudinal structure functions and withq51,
q852 for the pure pressure structure functions. In this w
we are comparing quantities with exactly the same dim
sional properties. Again, while the flux-made structure fu

tions, Sq
vP(R),Sq

vv2
(R) and the longitudinal structure func

tions, Sq
v(R) have the same local slope the pure-press

result obtained on the ESS ofFq(R) shows a poorer and
different scaling.

A few comments are now in order. On one hand, we
from Figs. 3 and 4 that the simple local-refined Kolmogor
hypothesis derived in the previous section is correct,
fluxes ~11! have the same scaling properties of the us
longitudinal structure function in homogeneous and isotro
turbulence, confirming that these observable with the sa

FIG. 3. Logarithmic local slope of:~* ! Sq
vv2

(R) vs Sq8
vv2

(R); ~h! Sq
vP(R) vs

Sq8
vP(R); ~3! Sq

v(R), vs Sq8
v (R), for q52 and q851. Notice that all the

above values are in perfect agreement with the high-Reynolds number
1.92 ~straight line!, while the logarithmic local slope for the pure-pressu
structure functionsF2(R) vs F1(R), (1) is different. The error bars are
estimated by looking at the fluctuations over the first half and the sec
half of the whole set of configurations.

FIG. 4. Logarithmic local slopes of:~h! Sq
vv2

(R) vs Sq8
vv2

(R); ~* ! Sq
vP(R) vs

Sq8
vP(R); ~3! Sq

v(R), vs Sq8
v (R), for q54 andq852. Notice that, as in Fig.

2, the flux-based structure functions have the same scaling behavior o
longitudinal structure function in agreement with the high-Reynolds reg
~straight line!. Here we present a comparison with the Pressure struc
function with the same physical dimensions of the flux-based structure f
tions, i.e.,F2(R) vs F1(r ), ~1!, still the pure-pressure structure functio
seems to have a different local slope.
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physical dimensions and built in terms of local field incr
ments scale in the same way. On the other hand,~see Fig. 4!
pure-pressure structure functions seem to violate the pr
ous statement despite of the fact that in this case there e
exist an exact result~5! supporting it. Why pure-pressur
correlations show this strong deviation from the straightf
ward dimensional estimate? One possible explanation is c
nected to the—possible—lack of isotropy in the statisti
Any isotropically forced DNS is affected by possible nonis
tropic fluctuations induced by the discretization of the n
merical grid. In the following section we have analyze
nonisotropic effects on both velocity and pressure fluct
tions.

V. ANISOTROPIC EFFECTS

The exact relation which connect the second-order p
sure structure function with a linear integral combination
fourth-order velocity structure function~5! is correct only in
the isotropic and homogeneous case. In order to test the
gree of isotropy of our simulation we have proceeded in
systematic decomposition in terms of the irreducible rep
sentations of the SO~3! symmetry group.4,6,17The SO~3! de-
composition is particularly simple to apply to scalar obse
able, i.e., observable with all vectorial indexes contract
like pressure structure functions or longitudinal structu
functions on the kind analyzed in this work. In these ca
the SO~3! decomposition is nothing but a decomposition
spherical harmonics. For example, the longitudinal struct
functions,Sq

v(R)5^(v i(x1R)2v i(x))R̂i)
q&, can be decom-

posed as

Sq
v~R![(

jm
Sq

jm~R!Yjm~R̂!, ~13!

where now, we have explicitly considered the possibility th
the undecomposed structure functions depend on the w
vector R and not only on its magnitude as in the previo
sections when isotropy was assumed. The coefficient of
decomposition,Sq

jm(R) depend only on the magnitude ofR
and on the two ‘‘quantum’’ numbersj,m which labels the
properties under rotations of theYjm eigenfunction. Obvi-
ously, in the case of perfect isotropy we would have only o
projection alive, i.e., the projection onY00. The SO~3! de-
composition here summarized has been already used in s
experimental and numerical data analysis to properly dis
tangle the anisotropic effects from the isotropic ones.4,6,12,17

In our case, the relative amplitudes ofSq
00(uRu) with respect

to the anisotropic fluctuationsSq
jm(uRu) with j .0,2 j <m

< j , gives a direct quantitative estimate of the degree
anisotropic fluctuations for any scaleuRu. In Fig. 5 we show
the log–log plot of the undecomposed second-order long
dinal structure functions and of its projection on the fu
isotropic eigenfunctionY00. As it is possible to see, despit
of the isotropic forcing used in the simulation, the finite-si
effects introduced by our computational grid are quite imp
tant at large scales: The projection,S2

00(uRu), shows a defi-
nitely better scaling than the undecomposed structure fu
tion already as a function of the real separationR, i.e.,
without using ESS. This dramatic effect was already o
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served in a similar application to the decomposition of v
locity fluctuations inside a channel.4 Figure 5 definitely show
that the SO~3! decomposition can help in cleaning scalin
properties also in ‘‘quasi-isotropic’’ simulations.

On the other hand, the situation is quite different wh
the same decomposition is applied to the pressure struc
functions

Fq
v~R![(

jm
Fq

jm~R!Yjm~R̂!. ~14!

Let us notice that pressure is a quasi-isotropic observ
also for strong anisotropic velocity configuration. Indeed,
ing the solutions of a Poisson problem, pressure is alway
average of velocity fluctuations on all spatial directions. T
simple considerations is perfectly verified on our numeri
simulation. In Fig. 6 we show the undecomposed seco
order pressure structure function together with its project
on the fully isotropic harmonics,Fq

00(R). One can hardly
detect any differences, suggesting that anisotropic fluc

FIG. 5. Undecomposed second-order velocity structure functionsS2
v(R)

measured on the planex-y, ~3!; and the projection,S2
00(R) ~1!, on the

isotropic eigenfunction. The straight line has the high-Reynolds slopez2
v

50.7. Notice that already in theR-space, the SO~3! decomposition improve
the overall scaling behavior. The two curves have been shifted along ty
axis for the sake of presentation.

FIG. 6. Undecomposed second-order pressure structure functionsF2(R)
measured on the planex-y, ~3!; and the projection,F2

00(R) ~1!, on the
isotropic eigenfunction. Notice that, at difference from Fig. 5, here the
composed and undecomposed structure functions are almost identical,
cating a high degree of isotropization in the pressure statistics.
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tions cannot be responsible for the poor scaling observe
the previous sections for the pure-pressure structure fu
tions.

The only possibility to reconcile the exact result~5! with
the poor scaling agreement between pressure structure f
tions and velocity structure functions is, in our opinion,
invoke strong Reynolds effects, i.e., in order to see a g
scaling for pressure one needs to go to very high Reyno
Indeed, the resolution of the Poisson problem certainly int
duces strong nonlocal effects on the statistics. Nonloca
may also translate in strong long-range effects in the Fou
space as far as the importance of boundary conditions
forcing on the inertial range properties are concerned. If t
is correct, there is no reason to expect good scaling pro
ties for pure-pressure correlations, unless the Reynolds n
ber is high enough to recover also in laboratory experime
an almost ‘‘infinite’’ inertial range extension.

VI. CONCLUSIONS

We have analyzed some pressure and pressure-vel
correlations in a Direct Numerical Simulations at moder
Reynolds numbers. We have derived on the basis of a sim
analysis of energy transfer properties across any sub-vol
in the real space what we call a ‘‘local’’ -Refined Kolmog
orov Hypothesis. We have identified a set of pressu
velocity correlations which should have a good scaling
havior because connected via the local-RKH to the scaling
the energy dissipation coarse grained on inertial range sc

We have showed that our scaling hypothesis is well ve
fied, while pure pressure correlations feel strong Reyno
effects. According to our analysis pressure scaling is p
fectly determined by the dimensional assumption that pr
sure behaves as a ‘‘velocity squared,’’ unless the fin
Reynolds effects are overwhelming. We do not find any s
which could support the fact that pressure differences beh
as velocity differences as proposed in Ref. 20.

We have also applied the SO~3! decompositions to the
pressure structure functions in order to show that poor s
ing properties showed by pure-pressure structure funct
are not connected to anisotropic fluctuations.
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