757 research outputs found
Spurious 'active longitudes' in parametric models of heavily spotted eclipsing binaries
In this paper, size distributions of starspots extrapolated from the case of
the Sun, are modelled on the eclipsing binary SV Cam to synthesise images of
stellar photospheres with high spot filling factors. These spot distributions
pepper the primary's surface with spots, many of which are below the resolution
capabilities of eclipse mapping and Doppler imaging techniques. The lightcurves
resulting from these modelled distributions are used to determine the
limitations of image reconstruction from photometric data. Surface brightness
distributions reconstructed from these lightcurves show distinctive spots on
the primary star at its quadrature points. It is concluded that two-spot
modelling or chi-squared minimisation techniques are more susceptible to
spurious structures being generated by systematic errors, arising from
incorrect assumptions about photospheric surface brightness, than simple
Fourier analysis of the light-curves.Comment: 5 pages, 18 figures, MNRAS in pres
Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994
Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed
from archival data sets for epochs spanning 1988 to 1994. By using the
signal-to-noise enhancement technique of Least-Squares Deconvolution, our
results show a greatly increased resolution of spot features than obtained in
previously published surface brightness reconstructions. These images show that
for the exception of epoch 1988.96, the starspot distributions are dominated by
a long-lived polar cap, and short-lived low to high latitude features. The
fragmented polar cap at epoch 1988.96 could indicate a change in the nature of
the dynamo in the star. For the first time we measure differential rotation for
epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These
measurements show variations on a timescale of at least one year, with the
strongest surface differential rotation ever measured for AB Dor occurring in
1994.86. In conjunction with previous investigations, our results represent the
first long-term analysis of the temporal evolution of differential rotation on
active stars.Comment: accepted by MNRAS 18 pages 18 figure
Constraining the Circumbinary Envelope of Z CMa via imaging polarimetry
Z CMa is a complex binary system, composed of a Herbig Be and an FU Ori star.
The Herbig star is surrounded by a dust cocoon of variable geometry, and the
whole system is surrounded by an infalling envelope. Previous
spectropolarimetric observations have reported a preferred orientation of the
polarization angle, perpendicular to the direction of a large, parsec-sized jet
associated with the Herbig star. The variability in the amount of polarized
light has been associated to changes in the geometry of the dust cocoon that
surrounds the Herbig star. We aim to constrain the properties of Z CMa by means
of imaging polarimetry at optical wavelengths. Using ExPo, a dual-beam imaging
polarimeter which operates at optical wavelengths, we have obtained imaging
(linear) polarimetric data of Z CMa. Our observations were secured during the
return to quiescence after the 2008 outburst. We detect three polarized
features over Z CMa. Two of these features are related to the two jets reported
in this system: the large jet associated to the Herbig star, and the micro-jet
associated to the FU Ori star. Our results suggest that the micro-jet extends
to a distance ten times larger than reported in previous studies. The third
feature suggests the presence of a hole in the dust cocoon that surrounds the
Herbig star of this system. According to our simulations, this hole can produce
a pencil beam of light that we see scattered off the low-density envelope
surrounding the system.Comment: Accepted for publication in A\&
Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB
We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions
Stellar Activity Cycles
The magnetic field of the Sun is generated by internal dynamo process with a
cyclic period of 11 years or a 22 year magnetic cycle. The signatures of the
Sun's magnetic cycle are observed in the different layers of its atmosphere and
in its internal layers. In this review, we use the same diagnostics to
understand the magnetic cycles of other stars with the same internal structure
as the Sun. We review what is currently known about mapping the surface
magnetic fields, chromospheric and coronal indicators, cycles in photometry and
asteroseismology. We conclude our review with an outlook for the future.Comment: accepted by Space Science Review
The color dependent morphology of the post-AGB star HD161796
Context. Many protoplanetary nebulae show strong asymmetries in their
surrounding shell, pointing to asymmetries during the mass loss phase.
Questions concerning the origin and the onset of deviations from spherical
symmetry are important for our understanding of the evolution of these objects.
Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims.
We aim at detecting signatures of an aspherical outflow, as well as to derive
the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme
polarimeter), a visitor instrument at the William Herschel Telescope, to
accurately image the dust shell surrounding HD 161796 in various wavelength
filters. Imaging polarimetry allows us to separate the faint, polarized, light
from circumstellar material from the bright, unpolarized, light from the
central star. Results. The shell around HD 161796 is highly aspherical. A clear
signature of an equatorial density enhancement can be seen. This structure is
optically thick at short wavelengths and changes its appearance to optically
thin at longer wavelengths. In the classification of the two different
appearances of planetary nebulae from HST images it changes from being
classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This
strengthens the interpretation that these two appearances are manifestations of
the same physical structure. Furthermore, we find that the central star is
hotter than often assumed and the relatively high observed reddening is due to
circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&
The relation between stellar magnetic field geometry and chromospheric activity cycles - I. The highly variable field of É› Eridani at activity minimum
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridani's large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridani's large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridani's large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars
Convective blueshift strengths for 242 evolved stars
Context. Extreme precision radial velocity (RV) surveys seeking to detect
planets at RV semi-amplitudes of 10 cm/s are facing numerous challenges. One of
those challenges is convective blueshift caused by stellar granulation and its
suppression through magnetic activity which plays a significant role in hiding
planetary signals in stellar jitter. Aims. Previously we found that for main
sequence stars, convective blueshift as an observational proxy for the strength
of convection near the stellar surface strongly depends on effective
temperature. In this work we investigate 242 post main sequence stars, covering
the subgiant, red giant, and asymptotic giant phases and empirically determine
the changes in convective blueshift with advancing stellar evolution. Methods.
We used the third signature scaling approach to fit a solar model for the
convective blueshift to absorption-line shift measurements from a sample of
coadded HARPS spectra, ranging in temperature from 3750 K to 6150 K. We compare
the results to main sequence stars of comparable temperatures but with a higher
surface gravity. Results. We show that convective blueshift becomes
significantly stronger for evolved stars compared to main sequence stars of a
similar temperature. The difference increases as the star becomes more evolved,
reaching a 5x increase below 4300 K for the most evolved stars. The large
number of stars in the sample, for the first time, allowed for us to
empirically show that convective blueshift remains almost constant among the
entire evolved star sample at roughly solar convection strength with a slight
increase from the red giant phase onward. We discover that the convective
blueshift shows a local minimum for subgiant stars, presenting a sweet spot for
exoplanet searches around higher mass stars, by taking advantage of their
spin-down during the subgiant transition.Comment: 16 pages, 14 figures; accepted for publication in A&
The Extreme Polarimeter: Design, Performance, First Results & Upgrades
Well over 700 exoplanets have been detected to date. Only a handful of these
have been observed directly. Direct observation is extremely challenging due to
the small separation and very large contrast involved. Imaging polarimetry
offers a way to decrease the contrast between the unpolarized starlight and the
light that has become linearly polarized after scattering by circumstellar
material. This material can be the dust and debris found in circumstellar
disks, but also the atmosphere or surface of an exoplanet. We present the
design, calibration approach, polarimetric performance and sample observation
results of the Extreme Polarimeter, an imaging polarimeter for the study of
circumstellar environments in scattered light at visible wavelengths. The
polarimeter uses the beam-exchange technique, in which the two orthogonal
polarization states are imaged simultaneously and a polarization modulator
swaps the polarization states of the two beams before the next image is taken.
The instrument currently operates without the aid of Adaptive Optics. To reduce
the effects of atmospheric seeing on the polarimetry, the images are taken at a
frame rate of 35 fps, and large numbers of frames are combined to obtain the
polarization images. Four successful observing runs have been performed using
this instrument at the 4.2 m William Herschel Telescope on La Palma, targeting
young stars with protoplanetary disks as well as evolved stars surrounded by
dusty envelopes. In terms of fractional polarization, the instrument
sensitivity is better than 10^-4. The contrast achieved between the central
star and the circumstellar source is of the order 10^-6. We show that our
calibration approach yields absolute polarization errors below 1%
- …