112 research outputs found

    Information Systems for Disability Determination: A Multi-Stakeholder Assessment of Electronic Medical Evidence Needs and Processes

    Get PDF
    This study focuses on Health Information Technology (Health IT) in improving the decision-making process concerning disability benefits. Using a multimethod, multilevel approach that includes case analysis and semi-structured interviews, this study examines the practices, challenges, and potential solutions or methods involved in adequate and timely collection of medical evidence through information technology (IT) to support disability determination. Researchers collected qualitative data through fifty-six semi-structured thirty-minute interviews with Disability Determination Services (DDS) personnel in three states. Based on site observations, interviews, and document analysis, they developed two provider case studies. To demonstrate the adequacy and timeliness of medical evidence collection, the study also examined and reviewed twelve disability claimant cases. Findings suggest that, at the payer and provider levels, electronic solutions provide more adequate and timely responses to medical evidence requests. Based on the case studies, implemented Health IT reduces incomplete medical evidence and decreases provider turnaround time in processing a payer’s requests. Among the claims examined, 50 percent received low scores for adequacy of medical evidence and 33 percent received high or medium scores for delay of return of medical evidence of record. This examination of disability determination demonstrated that Health IT holds promise for clinical data use in this context

    Identification of a TPX2-Like Microtubule-Associated Protein in Drosophila

    Get PDF
    Chromosome segregation during mitosis and meiosis relies on the spindle and the functions of numerous microtubule-associated proteins (MAPs). One of the best-studied spindle MAPs is the highly conserved TPX2, which has been reported to have characteristic intracellular dynamics and molecular activities, such as nuclear localisation in interphase, poleward movement in the metaphase spindle, microtubule nucleation, microtubule stabilisation, microtubule bundling, Aurora A kinase activation, kinesin-5 binding, and kinesin-12 recruitment. This protein has been shown to be essential for spindle formation in every cell type analysed so far. However, as yet, TPX2 homologues have not been found in the Drosophila genome. In this study, I found that the Drosophila protein Ssp1/Mei-38 has significant homology to TPX2. Sequence conservation was limited to the putative spindle microtubule-associated region of TPX2, and intriguingly, D-TPX2 (Ssp1/Mei-38) lacks Aurora A- and kinesin-5-binding domains, which are highly conserved in other animal and plant species, including many insects such as ants and bees. D-TPX2 uniformly localised to kinetochore microtubule-enriched regions of the metaphase spindle in the S2 cell line, and it had microtubule binding and bundling activities in vitro. In comparison with other systems, the contribution of D-TPX2 to cell division seems to be minor; live cell imaging of microtubules and chromosomes after RNAi knockdown identified significant delay in chromosome congression in only 18% of the cells. Thus, while this conserved spindle protein is present in Drosophila, other mechanisms may largely compensate for its spindle assembly and chromosome segregation functions

    Detection of high levels of mutations involved in anti-malarial drug resistance in Plasmodium falciparum and Plasmodium vivax at a rural hospital in southern Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Ethiopia, malaria is caused by <it>Plasmodium falciparum </it>and <it>Plasmodium vivax</it>, and anti-malarial drug resistance is the most pressing problem confronting control of the disease. Since co-infection by both species of parasite is common and sulphadoxine-pyrimethamine (SP) has been intensively used, resistance to these drugs has appeared in both <it>P. falciparum </it>and <it>P. vivax </it>populations. This study was conducted to assess the prevalence of anti-malarial drug resistance in <it>P. falciparum </it>and <it>P. vivax </it>isolates collected at a rural hospital in southern Ethiopia.</p> <p>Methods</p> <p>A total of 1,147 patients with suspected malaria were studied in different months across the period 2007-2009. <it>Plasmodium falciparum dhfr </it>and <it>dhps </it>mutations and <it>P. vivax dhfr </it>polymorphisms associated with resistance to SP, as well as <it>P. falciparum pfcrt </it>and <it>pfmdr1 </it>mutations conferring chloroquine resistance, were assessed.</p> <p>Results</p> <p>PCR-based diagnosis showed that 125 of the 1147 patients had malaria. Of these, 52.8% and 37.6% of cases were due to <it>P. falciparum </it>and <it>P. vivax </it>respectively. A total of 10 cases (8%) showed co-infection by both species and two cases (1.6%) were infected by <it>Plasmodium ovale</it>. <it>Pfdhfr </it>triple mutation and <it>pfdhfr/pfdhps </it>quintuple mutation occurred in 90.8% (95% confidence interval [CI]: 82.2%-95.5%) and 82.9% (95% CI: 72.9%-89.7%) of <it>P. falciparum </it>isolates, respectively. <it>Pfcrt </it>T76 was observed in all cases and <it>pfmdr1 </it>Y86 and <it>pfmdr1 </it>Y1246 in 32.9% (95% CI: 23.4%-44.15%) and 17.1% (95% CI: 10.3-27.1%), respectively. The <it>P. vivax dhfr </it>core mutations, N117 and R58, were present in 98.2% (95% CI: 89.4-99.9%) and 91.2% (95% CI: 80.0-96.7%), respectively.</p> <p>Conclusion</p> <p>Current molecular data show an extraordinarily high frequency of drug-resistance mutations in both <it>P. falciparum </it>and <it>P. vivax </it>in southern Ethiopia. Urgent surveillance of the emergence and spread of resistance is thus called for. The level of resistance indicates the need for implementation of entire population access to the new first-line treatment with artemether-lumefantrine, accompanied by government monitoring to prevent the emergence of resistance to this treatment.</p

    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly

    Get PDF
    Author Posting. © American Society for Cell Biology, 2009. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 20 (2009): 2766-2773, doi:10.1091/mbc.E09-01-0043.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.This work was supported by the American Cancer Society (grant PF0711401 to T. J. Maresca), the National Cancer Institute (grant CA078048-09 to T. J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J. C. Gatlin and grant GM24364 to E. D. Salmon)

    Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    Get PDF
    BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention
    corecore