404 research outputs found

    Photoelectrocatalytic performances of nanostructured/decorated TiO 2 electrodes: Effect of wavelength and cell configuration

    Get PDF
    The behaviour of TiO2 based electrodes was investigated during the photoelectrocatalytic water splitting process. TiO2 nanotubes and compact oxide structures were obtained by electrochemical oxidation of Ti foils. A subsequent hydrothermal process carried out at both the nanotubular and compact oxide structures allowed decorating the structure by TiO2 nanoparticles. The synthesized TiO2 samples worked as photoanodes both in a bulk three electrode cell and in a thin gap cell. The results from measurements of the photocurrent and from electrochemical impedance spectroscopy were used to highlight a combined effect of the wavelength of the incident light and the kind of cell configuration, on the global performance of the systems. The results indicate that the decoration process does not result only in a simple increase of the specific surface, but it also determines a different concentration of the bulk and superficial sites in the electrode. The different response of the sites at different wavelengths, along with the accessibility of the electrolyte to the porous structure are evocated to justify the experimental behaviour observed

    Fractional CO2 laser for genitourinary syndrome of menopause in breast cancer survivors: clinical, immunological, and microbiological aspects

    Get PDF
    The composition of vaginal microbiome in menopause and cancer survivor women changes dramatically leading to genitourinary syndrome of menopause (GSM) in up to 70% of patients. Recent reports suggest that laser therapy may be valuable as a not hormonal therapeutic modality. The aim of the present study was to evaluate the effects of fractional CO2 laser treatment on the vaginal secretory pathway of a large panel of immune mediators, usually implicated in tissue remodeling and inflammation, and on microbiome composition in postmenopausal breast cancer survivors. The Ion Torrent PGM platform and the Luminex Bio-Plex platform were used for microbiome and immune factor analysis. The significant reduction of clinical symptoms and the non-significant changes in vaginal microbiome support the efficacy and safety of laser treatment. Moreover, the high remodeling status in vaginal epithelium is demonstrated by the significant changes in inflammatory and modulatory cytokine patterns. Laser therapy can be used for the treatment of GSM symptoms and does not show any adverse effects. However, further studies will be needed to clarify its long-term efficacy and other effects

    Tisochrysis lutea F&M-M36 Mitigates Risk Factors of Metabolic Syndrome and Promotes Visceral Fat Browning through β3-Adrenergic Receptor/UCP1 Signaling

    Get PDF
    Pre-metabolic syndrome (pre-MetS) may represent the best transition phase to start treatments aimed at reducing cardiometabolic risk factors of MetS. In this study, we investigated the effects of the marine microalga Tisochrysis lutea F&M-M36 (T. lutea) on cardiometabolic components of pre-MetS and its underlying mechanisms. Rats were fed a standard (5% fat) or a high-fat diet (20% fat) supplemented or not with 5% of T. lutea or fenofibrate (100 mg/Kg) for 3 months. Like fenofibrate, T. lutea decreased blood triglycerides (p < 0.01) and glucose levels (p < 0.01), increased fecal lipid excretion (p < 0.05) and adiponectin (p < 0.001) without affecting weight gain. Unlike fenofibrate, T. lutea did not increase liver weight and steatosis, reduced renal fat (p < 0.05), diastolic (p < 0.05) and mean arterial pressure (p < 0.05). In visceral adipose tissue (VAT), T. lutea, but not fenofibrate, increased the β3-adrenergic receptor (β3ADR) (p < 0.05) and Uncoupling protein 1 (UCP-1) (p < 0.001) while both induced glucagon-like peptide-1 receptor (GLP1R) protein expression (p < 0.001) and decreased interleukin (IL)-6 and IL-1β gene expression (p < 0.05). Pathway analysis on VAT whole-gene expression profiles showed that T. lutea up-regulated energy-metabolism-related genes and down-regulated inflammatory and autophagy pathways. The multitarget activity of T. lutea suggests that this microalga could be useful in mitigating risk factors of MetS

    Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources

    Get PDF
    The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers \u3b2III-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of \u3b2III-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of \u3b2III-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells

    Caratterizzazione di Batteri Vibrio harveyi irradiati con luce UV e raggi X

    Get PDF
    Lo studio dei batteri sottoposti a stimolazioni dovute all'ambiente è di estremo interesse per impli-cazioni strutturali, meccanicistiche ed evolutive. Bat-teri luminescenti evoluti in determinati ambienti han-no sviluppato particolari risposte e il loro comporta-mento può fornire informazioni sulla funzione e sulla produzione dell‟enzima luciferina. Per esaminare l'in-terazione con radiazione UV, in condizioni controlla-te di laboratorio sono stati utilizzati ceppi batterici foto-luminescenti appartenenti alla specie Vibrio har-veyi campionati da una grotta costiera con elevato contenuto di radon che genera radiazioni ionizzanti. La sopravvivenza dei ceppi batterici è stata analizza-ta, alla luce e al buio, a seguito di una varietà di trat-tamenti genotossici tra cui esposizione alle radiazioni UV. I ceppi sono stati irradiati mediante una lampada germicida. I risultati hanno dimostrato che la maggior parte dei ceppi esibiscono un basso tasso di sopravvi-venza dopo l'esposizione ai raggi UV. Tutti i ceppi dopo esposizione a luce visibile e ai raggi UV hanno mostrato una forte capacità di fotoriattivazione. Que-sta capacità era inaspettata, poiché questi batteri sono stati prelevati da un ambiente buio in assenza raggi UV. Questo porta ad ipotizzare che la fotoriattivazio-ne in questi batteri potrebbe essere stata sviluppata dagli stessi per riparare le lesioni del DNA provocate anche da radiazioni diverse dall‟UV (ad esempio, raggi X) e che i batteri luminescenti potrebbero usare la luce da essi emessa per effettuare la fotoriattivazio-ne. L'elevata capacità di fotoriattivazione dei batteri è stata anche confermata dai risultati di deconvoluzio-ne. La deconvoluzione è stata applicata agli spettri di emissione che ha evidenziato la presenza di diversi picchi. La presenza del picco nel visibile è in grado di controllare l'enzima fotoliasi

    Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites") in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD) can utilize directly infused or systemic neurotoxins.</p> <p>Results</p> <p>We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+) and UB-(+) aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes.</p> <p>Conclusion</p> <p>Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a differentiated human neural cell mimics changes of early Parkinson's disease and may be useful for screening therapeutics for neuroprotection in that disease stage.</p

    Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression

    Get PDF
    Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders
    • …
    corecore