723 research outputs found
Socio-economic factors in the spread of SARS-COV-2 across Russian regions
Relevance. The worldwide spread of a new infection SARS-CoV-2 makes relevant the analysis of the socio-economic factors that make modern civilization vulnerable to previously unknown diseases. In this regard, the development of mathematical models describing the spread of pandemics like COVID-19 and the identification of socio-economic factors affecting the epidemiological situation in regions is an important research task.Research objective. This study seeks to develop a mathematical model describing the spread of COVID-19, thus enabling the analysis of the main characteristics of the spread of the disease and assessment of the impact of various socio-economic factors.Data and methods. The study relies on the official statistical data on the pandemic presented on coronavirus sites in Russia and other countries, Yandex DataLens dataset service, as well as data from the Federal State Statistics Service. The data were analyzed by using a correlation analysis of COVID-19 incidence parameters and socio-economic characteristics of regions; multivariate regression – to determine the parameters of the probabilistic mathematical model of the spread of the pandemic proposed by the authors; clustering – to group the regions with similar incidence characteristics and exclude the regions with abnormal parameters from the analysis.Results. A mathematical model of the spread of the COVID-19 pandemic is proposed. The parameters of this model are determined on the basis of official statistics on morbidity, in particular the frequency (probability) of infections, the reliability of the disease detection, the probability density of the disease duration, and its average value. Based on the specificity of COVID-19, Russia regions are clustered according to disease-related characteristics. For clusters that include regions with typical disease-related characteristics, a correlation analysis of the relationship between the number of cases and the rate of infection ( with the socio-economic characteristics of the region is carried out. The most significant factors associated with the parameters of the pandemic are identified.Conclusions. The proposed mathematical model of the pandemic and the established correlations between the parameters of the epidemiological situation and the socio-economic characteristics of the regions can be used to make informed decisions regarding the key risk factors and their impact on the course of the pandemic
Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications
AbstractAffibody molecules are a class of engineered affinity proteins with proven potential for therapeutic, diagnostic and biotechnological applications. Affibody molecules are small (6.5kDa) single domain proteins that can be isolated for high affinity and specificity to any given protein target. Fifteen years after its discovery, the Affibody technology is gaining use in many groups as a tool for creating molecular specificity wherever a small, engineering compatible tool is warranted. Here we summarize recent results using this technology, propose an Affibody nomenclature and give an overview of different HER2-specific Affibody molecules. Cumulative evidence suggests that the three helical scaffold domain used as basis for these molecules is highly suited to create a molecular affinity handle for vastly different applications
Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers
Internal exposure from naturally occurring radionuclides (including the inhaled long-lived actinides 232Th and 238U) is a component of the ubiquitous background radiation dose (National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States; NCRP Report No. 160; NCRP: Bethesda, MD, 2009). It is of interest to compare the concentration distribution of these natural ?-emitters in the lungs and respiratory lymph nodes with those resulting from occupational exposure, including exposure to anthropogenic plutonium and depleted and enriched uranium. This study examines the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantifying and visualizing the mass distribution of uranium and thorium isotopes from both occupational and natural background exposure in human respiratory tissues and, for the first time, extends this application to the direct imaging of plutonium isotopes. Sections of lymphatic and lung tissues taken from deceased former nuclear workers with a known history of occupational exposure to specific actinide elements (uranium, plutonium, or americium) were analyzed by LA-ICPMS. Using a previously developed LA-ICPMS protocol for elemental bio-imaging of trace elements in human tissue and a new software tool, we generated images of thorium (232Th), uranium (235U and 238U), and plutonium (239Pu and 240Pu) mass distributions in sections of tissue. We used a laboratory-produced matrix-matched standard to quantify the 232Th, 235U, and 238U concentrations. The plutonium isotopes 239Pu and 240Pu were detected by LA-ICPMS in 65 ?m diameter localized regions of both a paratracheal lymph node and a sample of lung tissue from a person who was occupationally exposed to refractory plutonium (plutonium dioxide). The average (overall) 239Pu concentration in the lymph node was 39.2 ng/g, measured by high purity germanium (HPGe) ?-spectrometry (Lynch, T. P.; Tolmachev, S. Y.; James, A. C. Radiat. Prot. Dosim. 2009, 134, 94?101). Localized mass concentrations of thorium (232Th) and uranium (238U) in lymph node tissue from a person not occupationally exposed to these elements (chronic natural background inhalation exposure) ranged up to 400 and 375 ng/g, respectively. In lung samples of occupationally nonexposed to thorium and uranium workers, 232Th and 238U concentrations ranged up to 200 and 170 ng/g, respectively. In a person occupationally exposed to air-oxidized uranium metal (Adley, F. E.; Gill, W. E.; Scott, R. H. Study of atmospheric contaminiation in the melt plant buiding. HW-23352(Rev.); United States Atomic Energy Commission: Oakridge, TN, 1952, p 1?97), the maximum 235U and 238U isotopic mass concentrations in a lymph node, measured at higher resolution (with a 30 ?m laser spot diameter), were 70 and 8500 ng/g, respectively. The ratio of these simultaneously measured mass concentrations signifies natural uranium. The current technique was not sufficiently sensitive, even with a 65 ?m laser spot diameter, to detect 241Am (at an overall tissue concentration of 0.024 ng/g, i.e., 3 Bq/g). © 2010 American Chemical Society
ПРИНЦИП ВЗАИМНОСТИ ДЛЯ НЕЛИНЕЙНОЙ АНИЗОТРОПНОЙ СРЕДЫ БЕЗ ГИСТЕРЕЗИСА: ТЕОРИЯ И ПРАКТИКА ПРИМЕНЕНИЯ
The construction of the correct vector material equations for nonlinear anisotropic soft magnetic materials remains one of the main reserves for increasing the accuracy of mathematical models in solving magnetostatic problems in the field formulation. The aim of the work is to establish asymptotic expressions for the reciprocity principle, which is a fundamental property of reversible magnetization processes of nonlinear anisotropic media, and to use the obtained results to optimize the computational process when constructing the vector magnetization characteristic and differential permeability tensor. The potentiality property of the magnetic flux density vector B in H-space is used. The main result of the paper is an illustration, using concrete examples, of an alternative method for calculating vector magnetization characteristics for one of the orthogonal families. In order to eliminate the instrumental error and ensure maximum accuracy and reliability of the obtained results, the exact characteristics for the components of the vector magnetization characteristic obtained by differentiating a special analytical expression for the potential were used as initial ones. The principle of reciprocity, by virtue of its universal nature, makes a significant contribution to the theory of nonlinear anisotropic media in the hysteresis-free approximation. Asymptotic expressions for the reciprocity principle are obtained for the first time. The performed computational experiments on the construction of vector characteristics based on the known magnetization characteristics in one of the directions confirm almost complete coincidence with the exact values obtained analytically. The use of asymptotic expressions for the reciprocity principle not only greatly simplifies computational processes for determining the orthogonal magnetization characteristics, but also implements the calculation of differential permeability tensors for arbitrary field values. The proposed method can be implemented in applications for calculating the magnetic field in devices with nonlinear anisotropic magnetically soft materials, primarily with cold rolled sheet electrical steels, which are most used in electrical engineering.Рассмотрены теоретические и практические аспекты построения векторных материальных уравнений нелинейных анизотропных сред. Показано, что используемые методы учета магнитных свойств даже в безгистерезисном приближении не всегда удовлетворяют требованиям полноты и математической строгости. Подтверждена эффективность энергетического подхода к построению векторных характеристик магнитного состояния таких сред. Особое внимание уделено принципу взаимности как фундаментальному свойству обратимых процессов намагничивания. Установлены новые асимптотические выражения для принципа взаимности и на численных примерах показана их эффективность при построении векторной модели магнитной среды без использования энергетического потенциала.
ПРИНЦИП ВЗАИМНОСТИ ДЛЯ НЕЛИНЕЙНОЙ АНИЗОТРОПНОЙ СРЕДЫ БЕЗ ГИСТЕРЕЗИСА: ТЕОРИЯ И ПРАКТИКА ПРИМЕНЕНИЯ
The construction of the correct vector material equations for nonlinear anisotropic soft magnetic materials remains one of the main reserves for increasing the accuracy of mathematical models in solving magnetostatic problems in the field formulation. The aim of the work is to establish asymptotic expressions for the reciprocity principle, which is a fundamental property of reversible magnetization processes of nonlinear anisotropic media, and to use the obtained results to optimize the computational process when constructing the vector magnetization characteristic and differential permeability tensor. The potentiality property of the magnetic flux density vector B in H-space is used. The main result of the paper is an illustration, using concrete examples, of an alternative method for calculating vector magnetization characteristics for one of the orthogonal families. In order to eliminate the instrumental error and ensure maximum accuracy and reliability of the obtained results, the exact characteristics for the components of the vector magnetization characteristic obtained by differentiating a special analytical expression for the potential were used as initial ones. The principle of reciprocity, by virtue of its universal nature, makes a significant contribution to the theory of nonlinear anisotropic media in the hysteresis-free approximation. Asymptotic expressions for the reciprocity principle are obtained for the first time. The performed computational experiments on the construction of vector characteristics based on the known magnetization characteristics in one of the directions confirm almost complete coincidence with the exact values obtained analytically. The use of asymptotic expressions for the reciprocity principle not only greatly simplifies computational processes for determining the orthogonal magnetization characteristics, but also implements the calculation of differential permeability tensors for arbitrary field values. The proposed method can be implemented in applications for calculating the magnetic field in devices with nonlinear anisotropic magnetically soft materials, primarily with cold rolled sheet electrical steels, which are most used in electrical engineering.Рассмотрены теоретические и практические аспекты построения векторных материальных уравнений нелинейных анизотропных сред. Показано, что используемые методы учета магнитных свойств даже в безгистерезисном приближении не всегда удовлетворяют требованиям полноты и математической строгости. Подтверждена эффективность энергетического подхода к построению векторных характеристик магнитного состояния таких сред. Особое внимание уделено принципу взаимности как фундаментальному свойству обратимых процессов намагничивания. Установлены новые асимптотические выражения для принципа взаимности и на численных примерах показана их эффективность при построении векторной модели магнитной среды без использования энергетического потенциала.
Synthesis and reactivity of 5-polyfluoroalkyl-5-deazaalloxazines
Reaction of 6-arylamino-1,3-dialkyluracils with anhydrides of polyfluorocarboxylic acids in the presence of pyridine and subsequent cyclization with concentrated H2SO4 gave the corresponding 1,3-dialkyl-5-(polyfluoroalkyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones (5-polyfluoroalkyl-5-deazaalloxazines). The reactivity of these compounds towards nucleophilic reagents, such as sodium cyanoborohydride, acetophenone, nitromethane, potassium cyanide, indole and p-thiocresol, as well as Suzuki and Sonogashira couplings are described. The nucleophilic addition takes place at the 5-position of the 5-deazaalloxazine system and is in many cases irreversible to give 5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione derivatives in good to excellent yields.© 2013 The Royal Society of Chemistry
influence of specific intermolecular interactions on the thermal and dielectric properties of bulk polymers atomistic molecular dynamics simulations of nylon 6
Specific intermolecular interactions, in particular H-bonding, have a strong influence on the structural, thermal and relaxation characteristics of polymers. We report here the results of molecular dynamics simulations of Nylon 6 which provides an excellent example for the investigation of such an influence. To demonstrate the effect of proper accounting for H-bonding on bulk polymer properties, the AMBER99sb force field is used with two different parametrization approaches leading to two different sets of partial atomic charges. The simulations allowed the study of the thermal and dielectric properties in a wide range of temperatures and cooling rates. The feasibility of the use of the three methods for the estimation of the glass transition temperature not only from the temperature dependence of structural characteristics such as density, but also by using the electrostatic energy and dielectric constant is demonstrated. The values of glass transition temperatures obtained at different cooling rates are practically the same for the three methods. By proper accounting for partial charges in the simulations, a reasonable agreement between the results of our simulations and experimental data for the density, thermal expansion coefficient, static dielectric constant and activation energy of γ and β relaxations is obtained demonstrating the validity of the modeling approach reported
МАГНИТНЫЕ СВОЙСТВА МНОГОКОМПОНЕНТНЫХ ГЕТЕРОГЕННЫХ СРЕД С ДВОЯКОПЕРИОДИЧЕСКОЙ СТРУКТУРОЙ
Heterogeneous media have a wide range of practical applications. Media with a doubly periodic structure (matrices of high-gradient magnetic separators, etc.) occupy an important place. Their study is usually based on experimental and approximate methods and is limited to simple two-phase systems. The development of universal and accurate methods of mathematical modelling of electrophysical processes in such environments is an urgent task. The aim of the paper is to develop a method for calculating local and effective parameters of a magnetostatic field with minimal restrictions on the number of phases, their geometry, concentration, and magnetic properties. Based on the theory of elliptic functions and secondary sources, an integral equation is formulated with respect to the magnetization vector of the elements of the main parallelogram of the periods. The calculated expressions for the complex potential, field strength, and components of the effective magnetic permeability tensor are obtained. The results of a series of computational experiments confirming the universality and effectiveness of the method are presented. As an example of a practical application, a detailed study of the field of the magnetic forces of the matrix is carried out: the lines of magnetic isodine and potential extraction areas for a complex version of the matrix are constructed. Within the framework of the developed method, the calculation of local and effective field characteristics is carried out by solving the field problem in the field of an arbitrary parallelogram of periods without specifying boundary conditions on its sides with a comprehensive consideration of significant interdependent factors. The practical value of the method is to create new opportunities for improving the technical characteristics of electrophysical devices for which the universality and accuracy of calculating local and effective field characteristics is decisive. An algorithm for optimizing the characteristics of the separator is proposed. Изложен метод расчета магнитостатического поля в двоякопериодической гетерогенной среде. Сформулировано интегральное уравнение относительно вектора намагниченности элементов среды. Расчет характеристик поля осуществляется путем решения полевой задачи в области основного параллелограмма периодов без задания граничных условий на его сторонах. Получены расчетные выражения для напряженности поля и тензора магнитной проницаемости. Приведены результаты вычислительных экспериментов, подтверждающих универсальность и эффективность метода. Проведено детальное исследование поля магнитных сил матрицы высокоградиентного магнитного сепаратора. Метод открывает новые возможности повышения технических характеристик электрофизических устройств, для которых универсальность и точность расчета локальных и эффективных характеристик поля является определяющей
- …