96 research outputs found

    Bovine Serum Albumin Adsorbed PGA-co-PDL Nanocarriers for Vaccine Delivery via Dry Powder Inhalation

    Get PDF
    PURPOSE: Dry powder vaccine delivery via the pulmonary route has gained significant attention as an alternate route to parenteral delivery. In this study, we investigated bovine serum albumin (BSA) adsorbed poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL polymeric nanoparticles (NPs) within L-leucine (L-leu) microcarriers for dry powder inhalation. METHODS: NPs were prepared by oil-in-water single emulsion-solvent evaporation and particle size optimised using Taguchi’s design of experiment. BSA was adsorbed onto NPs at different ratios at room temperature. The NPs were spray-dried in aqueous suspension of L-leu (1:1.5) using a Büchi-290 mini-spray dryer. The resultant nanocomposite microparticles (NCMPs) were characterised for toxicity (MTT assay), aerosolization (Next Generation Impactor), in vitro release study and BSA was characterized using SDS-PAGE and CD respectively. RESULTSL NPs of size 128.50 ± 6.57 nm, PDI 0.07 ± 0.03 suitable for targeting lung dendritic cells were produced. BSA adsorption for 1 h resulted in 10.23 ± 1.87 μg of protein per mg of NPs. Spray-drying with L-leu resulted in NCMPs with 42.35 ± 3.17% yield. In vitro release study at 37°C showed an initial burst release of 30.15 ± 2.33% with 95.15 ± 1.08% over 48 h. Aerosolization studies indicated fine particle fraction (FPF%) dae < 4.46 μm as 76.95 ± 5.61% and mass median aerodynamic diameter (MMAD) of 1.21 ± 0.67 μm. The cell viability was 87.01 ± 14.11% (A549 cell line) and 106.04 ± 21.14% (16HBE14o- cell line) with L-leu based NCMPs at 1.25 mg/ml concentration after 24 h treatment. The SDS-PAGE and CD confirmed the primary and secondary structure of the released BSA. CONCLUSIONS: The results suggest that PGA-co-PDL/L-leu NCMPs may be a promising carrier for pulmonary vaccine delivery due to excellent BSA adsorption and aerosolization behaviour

    Bovine serum albumin adsorbed PGA-CO-PDL nanocarriers for vaccine delivery via dry powder inhalation

    Get PDF
    Purpose: Dry powder vaccine delivery via the pulmonary route has gained significant attention as an alternate route to parenteral delivery. In this study, we investigated bovine serum albumin (BSA) adsorbed poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL polymeric nanoparticles (NPs) within L-leucine (L-leu) microcarriers for dry powder inhalation. Methods: NPs were prepared by oil-in-water single emulsion-solvent evaporation and particle size optimised using Taguchi's design of experiment. BSA was adsorbed onto NPs at different ratios at room temperature. The NPs were spray-dried in aqueous suspension of L-leu (1:1.5) using a Büchi-290 mini-spray dryer. The resultant nanocomposite microparticles (NCMPs) were characterised for toxicity (MTT assay), aerosolization (Next Generation Impactor), in vitro release study and BSA was characterized using SDS-PAGE and CD respectively. Results: NPs of size 128.50∈±∈6.57 nm, PDI 0.07∈±∈0.03 suitable for targeting lung dendritic cells were produced. BSA adsorption for 1 h resulted in 10.23∈±∈1.87 μg of protein per mg of NPs. Spray-drying with L-leu resulted in NCMPs with 42.35∈±∈3.17% yield. In vitro release study at 37°C showed an initial burst release of 30.15∈±∈2.33% with 95.15∈±∈1.08% over 48 h. Aerosolization studies indicated fine particle fraction (FPF%) dae∈<∈4.46 μm as 76.95∈±∈5.61% and mass median aerodynamic diameter (MMAD) of 1.21∈±∈0.67 μm. The cell viability was 87.01∈±∈14.11% (A549 cell line) and 106.04∈±∈21.14% (16HBE14o- cell line) with L-leu based NCMPs at 1.25 mg/ml concentration after 24 h treatment. The SDS-PAGE and CD confirmed the primary and secondary structure of the released BSA. Conclusions: The results suggest that PGA-co-PDL/L-leu NCMPs may be a promising carrier for pulmonary vaccine delivery due to excellent BSA adsorption and aerosolization behaviour

    INVESTIGATION OF SOME CHEMICAL CONSTITUENTS AND ANTIOXIDANT ACTIVITY OF ASPARAGUS SPERNGERI

    Get PDF
    Objective: Asparagus sprengeri (A S) is an ornamental plant cultivated in EGYPT. This study was designed to investigate some lipid and flavanoid constituents, in addition to the evaluation of antioxidant activity of different extracts of the plant. Methods: Two phospholipid were identified by (HPTLC). The fatty acid methyl ester and unsaponifiable matter were analyzed by GC. Four flavonoids were isolated by CC and purified by PPc. Identification of isolated flavanoidal compounds was carried by spectroscopic analysis Viz, TLC,PC, UV, EL-MS and H-1– NMR. The different extracts were tested for their free radical scavenging activity using DPPH and β-Carotene- linoleic acid bleaching assay. Results: Four flavonoids, were isolated, apigenin, dihydroquercitin, naringenin, apigenin- 7-o- glucoside Nine fatty acids, Myrestic and linoliec acids were the major components. The unsaponifiable matter was found to be a mixture of hydrocarbons from (C13– C28) and cholesterol two classes of phospholipid were identified namely L-α-Phosphatidyl-DL-glycerol and L-α- Phosphatidylethanolamine. The alcoholic extract of the plant has moderate antioxidant activity with EC50 0.114 and 0.110 mg/ml for the DppH and β-carotene methods respectively Conclusion: Asparagus sprengeri can be used as the natural antioxidant. Flavonoids are suggested to be a group of key antioxidants in Asparagus

    Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers

    Get PDF
    This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, α-chymotrypsin (α-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-ω-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. α-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w1/o/w2) utilizing chloroform (CHF) as the organic solvent, l-leucine as a dispersibility enhancer and an internal aqueous phase (w1) containing PEG4500 or Pluronic® F-68 (PLF68). α-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by 1H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation α-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08 ± 3.91%), loading (22.31 ± 4.34 μg/mg), FPF (fine particle fraction) (37.63 ± 0.97%); FPD (fine particle dose) (179.88 ± 9.43 μg), MMAD (mass median aerodynamic diameter) (2.95 ± 1.61 μm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5 h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44 ± 3.11%), loading (19.31 ± 3.27 μg/mg) and activity (81.9 ± 2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases

    Effects of sand and gating architecture on the performance of foot valve lever casting components used in pump industries

    Get PDF
    Funding Information: The authors thank Kalasalingam Academy of Research and Education, Krishnankoil for providing the facilities for various tests and characterizations. The King Saud University authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RG-148. This Research was funded by King Mongkut's University of Technology North Bangkok has received funding support from the National Science, Research and Innovation Fund (NSRF) (Grant No. KMUTNB-MHESI-64-16.1). Publisher Copyright: © 2021 The Author(s)This work addresses manufacture, testing and simulation of foot valve lever (FVL) for monoblock pump industry, using a cost-effective casting design process. The impact of different types of sands, such as air-set, dry and sodium silicate as well as gating designs, namely H-, U- and O-type, were studied with respect to surface roughness and porosity. The mold pattern was produced using additive manufacturing (AM) technology. Both experimental and numerical investigations were performed on the temperature distribution of molten metal at random locations for the different gating configurations or designs, considering mold filling and solidification. It was evident from the experimental investigation that contribution of air-set sand and O-type gating architecture showed limited consistency effects. Importantly, gating architecture was the most influential parameter to determine all specified quality outcomes, independent of sand mold. An order of O < H < U-type was obtained from the gating designs for minimal surface roughness and percentage of porosity. Furthermore, the microstructure analysis depicted only an irregular defect with minimum quantity at both surface and cross-section of O-type at two different locations. Optimum pouring temperatures of 740, 750 and 790 °C were obtained for mold filling of all 24 components of H-, O- and U-type of gating designs, respectively. The varying solidification temperature was observed from real time thermocouple reading, which was in close agreement with the numerical simulation. Evidently, O-type of gating design exhibited best performance for large-scale development of the FVL in terms of surface roughness, porosity and cooling effects.Peer reviewe

    Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects

    Get PDF
    A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 mM to 1.20 mM, compared to doxorubicin GI50 value = 1.10 mM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects

    Get PDF
    A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4-disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50_{50} values ranging from 0.70 µM to 1.20 µM, compared to doxorubicin GI50_{50} value = 1.10 µM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50_{50} values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50_{50} = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50_{50} values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50_{50} = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking score

    Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAFV600E^{V600E} Dual Inhibitors Endowed with Antiproliferative Activity

    Get PDF
    2,3,4-trisubstituted thiazoles 3a–i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3_3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a–i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a–i demonstrated good antiproliferative activity, with GI50_{50} values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50_{50} value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E^{V600E} inhibitory assays’ results matched the antiproliferative assay’s results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E^{V600E} inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E^{V600E} and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E^{V600E} and EGFR, with values of −8.7 and −8.5 kcal/mol, respectively

    Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties

    Get PDF
    Novel series of amidines were synthesized via the interaction between alicyclic amines, cyclic ketones, and a highly electrophilic 4-azidoquinolin-2(1H)-ones without any catalyst or additive. All the obtained products were elucidated based on NMR spectroscopy, mass spectrometry, and elemental analysis. The reaction conditions were optimized using cyclohexanone (2), piperidine (3a), and 4-azido-quinolin-2(1H)-one (1a) under an air atmosphere. The new compounds 4a-l and 5a-c were tested for antiproliferative activity against four cancer cell lines using doxorubicin as a reference drug. The most potent derivatives were compounds 4b, 4d, 4e, 4i, and 5c, with GI50_{50} ranging from 1.00 µM to 1.50 µM. Compound 5c was the most effective derivative against the four cancer cell lines, outperforming doxorubicin. The compounds 4b, 4d, 4e, 4i, and 5c were studied further as topoisomerase I and IIα inhibitors. The compounds tested showed selective inhibition of topo I over topo IIα. Finally, docking studies explain why these compounds prefer topo I over topo IIα
    • …
    corecore