3,572 research outputs found

    Semiconservative quasispecies equations for polysomic genomes: The general case

    Full text link
    This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we develop a more general formulation of the quasispecies equations that is applicable to diploid and even polyploid genomes. Interestingly, with an appropriate classification of population fractions, we obtain a system of equations that is formally identical to the haploid case. As with the work for haploid genomes, we consider both random and immortal DNA strand chromosome segregation mechanisms. However, in contrast to the haploid case, we have found that an analytical solution for the mean fitness is considerably more difficult to obtain for the polyploid case. Accordingly, whereas for the haploid case we obtained expressions for the mean fitness for the case of an analogue of the single-fitness-peak landscape for arbitrary lesion repair probabilities (thereby allowing for non-complementary genomes), here we solve for the mean fitness for the restricted case of perfect lesion repair.Comment: 16 pages, 3 figure

    Results from RHIC with Implications for LHC

    Full text link
    Results from the PHENIX experiment at RHIC in p-p and Au+Au collisions are reviewed from the perspective of measurements in p-p collisions at the CERN-ISR which serve as a basis for many of the techniques used. Issues such as J/Psi suppression and hydrodynamical flow in A+A collisions require data from LHC-Ions for an improved understanding. Suppression of high pT particles in Au+Au collisions, first observed at RHIC, also has unresolved mysteries such as the equality of the suppression of inclusive pi0 (from light quarks and gluons) and direct-single electrons (from the decay of heavy quarks) in the transverse momentum range 4< pT < 9 GeV/c. This disfavors a radiative explanation of suppression and leads to a fundamental question of whether the Higgs boson gives mass to fermions. Observation of an exponential distribution of direct photons in central Au+Au collisions for 1< pT <2 GeV/c where hard-processes are negligible and with no similar exponential distribution in p-p collisions indicates thermal photon emission from the medium at RHIC, making PHENIX at the moment ``the hottest experiment in Physics''.Comment: Invited lectures at the International School of Subnuclear Physics, 47th Course, "The most unexpected at LHC and the status of High Energy Frontier'', Erice, Sicily, Italy, August 29-September 7. 2009. 32 pages, 22 figure

    A preliminary description of the Chemical Camera

    Get PDF
    Spinning cryostat, or chemical camera, for sampling supersonic gas stream and recording chemical kinetic

    Why the xE distribution triggered by a leading particle does not measure the fragmentation function but does measure the ratio of the transverse momenta of the away-side jet to the trigger-side jet

    Get PDF
    Hard-scattering of point-like constituents (or partons) in p-p collisions was discovered at the CERN-ISR in 1972 by measurements utilizing inclusive single or pairs of hadrons with large transverse momentum (pTp_T). It was generally assumed, following Feynman, Field and Fox, as shown by data from the CERN-ISR experiments, that the pTap_{T_a} distribution of away side hadrons from a single particle trigger [with pTtp_{T_t}], corrected for of fragmentation would be the same as that from a jet-trigger and follow the same fragmentation function as observed in e+ee^+ e^- or DIS. PHENIX attempted to measure the fragmentation function from the away side xEpTa/pTtx_E\sim p_{T_a}/p_{T_t} distribution of charged particles triggered by a π0\pi^0 in p-p collisions at RHIC and showed by explicit calculation that the xEx_E distribution is actually quite insensitive to the fragmentation function. Illustrations of the original arguments and ISR results will be presented. Then the lack of sensitivity to the fragmentation function will be explained, and an analytic formula for the xEx_E distribution given, in terms of incomplete Gamma functions, for the case where the fragmentation function is exponential. The away-side distribution in this formulation has the nice property that it both exhibits xEx_E scaling and is directly sensitive to the ratio of the away jet p^Ta\hat{p}_{T_a} to that of the trigger jet, p^Tt\hat{p}_{T_t}, and thus can be used, for example, to measure the relative energy loss of the two jets from a hard-scattering which escape from the medium in A+A collisions. Comparisons of the analytical formula to RHIC measurements will be presented, including data from STAR and PHENIX, leading to some interesting conclusions.Comment: 6 pages, 5 figures, Proceedings of Poster Session, 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006), November 14-20, 2006, Shanghai, P. R. Chin

    From the ISR to RHIC--measurements of hard-scattering and jets using inclusive single particle production and 2-particle correlations

    Full text link
    Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the method of leading particles, proved that the partons of Deeply Inelastic Scattering strongly interacted with each other. Further ISR measurements utilizing inclusive single or pairs of hadrons established that high pT particles are produced from states with two roughly back-to-back jets which are the result of scattering of constituents of the nucleons as desribed by Quantum Chromodynamics (QCD), which was developed during the course of these measurements. These techniques, which are the only practical method to study hard-scattering and jet phenomena in Au+Au central collisions at RHIC energies, are reviewed, as an introduction to present RHIC measurements.Comment: To appear in the proceedings of the workshop on Correlations and Fluctuations in Relativistic Nuclear Collisions, MIT, Cambridge, MA, April 21-23, 2005, 10 pages, 9 figures, Journal of Physics: Conference Proceeding

    Analyzing a Freudian analysis.

    Get PDF
    n/

    From the Editor’s Viewpoint

    Get PDF

    From the Editor’s Viewpoint

    Get PDF

    From the Editor\u27s Viewpoint

    Get PDF

    From the Editor\u27s Viewpoint

    Get PDF
    corecore