1,927 research outputs found

    Large-N solutions of the Heisenberg and Hubbard-Heisenberg models on the anisotropic triangular lattice: application to Cs2_2CuCl4_4 and to the layered organic superconductors Îș\kappa-(BEDT-TTF)2_2X

    Full text link
    We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials Îș\kappa-(BEDT-TTF)2_2X. The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2_2CuCl4_4. We find rich phase diagrams for each model. The Sp(N) antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite-N are also discussed. For parameters relevant to Cs2_2CuCl4_4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap. A metal-insulator transition occurs at intermediate values of the interaction strength.Comment: Typos corrected, one reference added. 20 pages, 17 figures, RevTeX 3.

    N\'eel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant four-fermion model in 2+1 dimensions

    Full text link
    We show that the N\'eel transition and spin fluctuations near the N\'eel transition in planar cuprates can be described by an SU(2) invariant relativistic four-fermion model in 2+1 dimensions. Features of the pseudogap phenomenon are naturally described by the appearance of an anomalous dimension for the spinon propagator.Comment: 5 pages, 2 figures (revtex4). Final revised and corrected versio

    Magnetic impurity coupled to interacting conduction electrons

    Full text link
    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of an 1/N_f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to lowest order in the interaction strength. We find that their effect on the Kondo temperature, T_K, in the Kondo limit is twofold: First, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T_K. Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T_K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling.Comment: ReVTeX 19 pages, 3 uuenconded postscript figure

    Post-Foucauldian governmentality: what does it offer critical social policy analysis?

    Get PDF
    This article considers the theoretical perspective of post-Foucauldian governmentality, especially the insights and challenges it poses for applied researchers within the critical social policy tradition. The article firstly examines the analytical strengths of this approach to understanding power and rule in contemporary society, before moving on to consider its limitations for social policy. It concludes by arguing that these insights can be retained, and some of the weaknesses overcome, by adopting a ‘realist governmentality’ approach (Stenson 2005, 2008). This advocates combining traditional discursive analysis with more ethnographic methods in order to render visible the concrete activity of governing, and unravel the messiness, complexity and unintended consequences involved in the struggles around subjectivity

    Duality relations and exotic orders in electronic ladder systems

    Full text link
    We discuss duality relations in correlated electronic ladder systems to clarify mutual relations between various conventional and unconventional phases. For the generalized two-leg Hubbard ladder, we find two exact duality relations, and also one asymptotic relation which holds in the low-energy regime. These duality relations show that unconventional (exotic) density-wave orders such as staggered flux or circulating spin-current are directly mapped to conventional density-wave orders, which establishes the appearance of various exotic states with time-reversal and/or spin symmetry breaking. We also study duality relations in the SO(5) symmetry that was proposed to unify antiferromagnetism and d-wave superconductivity. We show that the same SO(5) symmetry also unifies circulating spin current order and s-wave superconductivity.Comment: 9 pages, 2 figures; Proceedings of SPQS2004 (Sendai

    A randomised controlled trial of the clinical and cost-effectiveness of a contingency management intervention for reduction of cannabis use and of relapse in early psychosis (CIRCLE): a study protocol for a randomised controlled trial

    Get PDF
    Background: Around 35–45 % of people in contact with services for a first episode of psychosis are using cannabis. Cannabis use is associated with delays in remission, poorer clinical outcomes, significant increases in the risk of relapse, and lower engagement in work or education. While there is a clear need for effective interventions, so far only very limited benefits have been achieved from psychological interventions. Contingency management (CM) is a behavioural intervention in which specified desired behavioural change is reinforced through financial rewards. CM is now recognised to have a substantial evidence base in some contexts and its adoption in the UK is advocated by the National Institute for Health and Care Excellence (NICE) guidance as a treatment for substance or alcohol misuse. However, there is currently little published data testing its effectiveness for reducing cannabis use in early psychosis. Methods: CIRCLE is a two-arm, rater-blinded randomised controlled trial (RCT) investigating the clinical and cost-effectiveness of a CM intervention for reducing cannabis use among young people receiving treatment from UK Early Intervention in Psychosis (EIP) services. EIP service users (n = 544) with a recent history of cannabis use will be recruited. The experimental group will receive 12 once-weekly CM sessions, and a voucher reward if urinalysis shows that they have not used cannabis in the previous week. Both the experimental and the control groups will be offered an Optimised Treatment as Usual (OTAU) psychoeducational package targeting cannabis use. Assessment interviews will be performed at consent, at 3 months, and at 18 months. The primary outcome is time to relapse, defined as admission to an acute mental health service. Secondary outcomes include proportion of cannabis-free urine samples during the intervention period, severity of positive psychotic symptoms, quality-adjusted life years, and engagement in work or education. Discussion: CIRCLE is a RCT of CM for cannabis use in young people with a recent history of psychosis (EIP service users) and recent cannabis use. It is designed to investigate whether the intervention is a clinically and cost-effective treatment for cannabis use. It is intended to inform future treatment delivery, particularly in EIP settings

    Staggered orbital currents in the half-filled two-leg ladder

    Get PDF
    Using Abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled two-leg ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.Comment: 8 pages, 2 figures. Final versio

    Deconfinement transition in three-dimensional compact U(1) gauge theories coupled to matter fields

    Get PDF
    It is shown that permanent confinement in three-dimensional compact U(1) gauge theory can be destroyed by matter fields in a deconfinement transition. This is a consequence of a non-trivial infrared fixed point caused by matter, and an anomalous scaling dimension of the gauge field. This leads to a logarithmic interaction between the defects of the gauge-fields, which form a gas of magnetic monopoles. In the presence of logarithmic interactions, the original electric charges are unconfined. The confined phase which is permanent in the absence of matter fields is reached at a critical electric charge, where the interaction between magnetic charges is screened by a pair unbinding transition in a Kosterlitz-Thouless type of phase-transition.Comment: RevTex4, 4 pages, no figures; version accepted for publication in PR

    Topological spin excitations of Heisenberg antiferromagnets in two dimensions

    Full text link
    In this paper we discuss the construction and the dynamics of vortex-like topological spin excitations in the Schwinger-boson description of Heisenberg antiferromagnets in two dimensions. The topological spin excitations are Dirac fermions (with gap) when spin value SS is a half-integer. Experimental and theoretical implications of these excitations are being investigated.Comment: Latex file, no figur
    • 

    corecore