50 research outputs found

    Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations

    Get PDF
    Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs) exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibly through epigenetic mechanisms. Exposure to Dex results in decreased NSC proliferation, with no effects on survival or differentiation, and changes in the expression of genes associated with cellular senescence and mitochondrial functions. Dex upregulates cell cycle-related genes p16 and p21 in a glucocorticoid receptor(GR)-dependent manner. The senescence-associated markers high mobility group (Hmg) A1 and heterochromatin protein 1 (HP1) are also upregulated in Dex-exposed NSCs, whereas Bmi1 (polycomb ring finger oncogene) and mitochondrial genes Nd3 (NADH dehydrogenase 3) and Cytb (cytochrome b) are downregulated. The concomitant decrease in global DNA methylation and DNA methyltransferases (Dnmts) suggests the occurrence of epigenetic changes. All these features are retained in daughter NSCs (never directly exposed to Dex) and are associated with a higher susceptibility to oxidative stress, as shown by the increased occurrence of apoptotic cell death on exposure to the redox-cycling reactive oxygen species (ROS) generator 2,3-dimethoxy-1-naphthoquinone (DMNQ). Our study provides novel evidence for programming effects induced by glucocorticoids (GCs) on NSCs and supports the idea that fetal exposure to endogenous or exogenous GCs is likely to result in long-term consequences that may predispose to neurodevelopmental and/or neurodegenerative disorders

    Effects of food on physical and sleep complaints in children with ADHD: a randomised controlled pilot study

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD), a common behavioural disorder in children, may be associated with comorbid physical and sleep complaints. Dietary intervention studies have shown convincing evidence of efficacy in reducing ADHD symptoms in children. In this pilot study, we investigated the effects of an elimination diet on physical and sleep complaints in children with ADHD. A group of 27 children (3.8–8.5 years old), who all met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for ADHD, were assigned randomly to either a diet group (15/27) or a control group (12/27). The diet group followed a 5-week elimination diet; the control group adhered to their normal diet. Parents of both groups had to keep an extended diary and had to monitor the behaviour and the physical and sleep complaints of their child conscientiously. The primary endpoint was the clinical response, i.e. a decrease of physical and sleep complaints, at the end of the trial, based on parent ratings on a Physical Complaints Questionnaire. The number of physical and sleep complaints was significantly decreased in the diet group compared to the control group (p < 0.001), with a reduction in the diet group of 77% (p < 0.001, effect size = 2.0) and in the control group of 17% (p = 0.08, effect size = 0.2). Specific complaints that were significantly reduced were in three domains: headaches or bellyaches, unusual thirst or unusual perspiration, and sleep complaints. The reduction of complaints seemed to occur independently of the behavioural changes (p = 0.1). However, the power of this comparison was low. A positive correlation existed between the reduction of physical and behavioural symptoms (p < 0.01). The reduction did not differ between children with or without an atopic constitution (p = 0.7). An elimination diet may be an effective instrument to reduce physical complaints in children with ADHD, but more research is needed to determine the effects of food on (functional) somatic symptoms in children with and without ADHD. This trial was registered as an International Standard Randomised Controlled Trial, ISRCTN47247160

    Adult outcomes of being born late preterm or early term:what do we know?

    No full text
    Abstract The literature on adult outcomes of people born late preterm (LPT, 34–36 completed weeks) or early term (ET, 37–38 weeks) was reviewed. In PubMed, 9547 articles were identified; 53 were eligible. Of these, 12 were based on clinical cohorts, 32 on medical birth register linkages, and nine on historical birth cohorts; 48 out of 53 on Nordic countries; 50 out of 53 reported on LPT and eight out of 53 reported on ET. LPT plus ET have increased early (&lt; 45 years) adult all-cause mortality. Despite increased cardiometabolic risk factors and slightly lower cardiorespiratory fitness in LPT, no studies showed increased risk for coronary heart disease, some showed increased risk for stroke, and all showed increased risk for type 2 diabetes. Most show increased risk for asthma and decreased allergic rhinitis. LPT have slightly lower cognitive abilities and higher rates of several mental disorders; ET have intermediate values. LPT and ET adults have slightly lower education, occupational status, and income. We recommend that authors report findings of LPT/ET separately from those born more preterm
    corecore