415 research outputs found

    Past warming trend constrains future warming in CMIP6 models

    Get PDF
    Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here, we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: The observationally constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16 and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14 and 8% lower by 2090, relative to 1995–2014. Observationally constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target

    Stokes diagnostics of simulated solar magneto-convection

    Get PDF
    We present results of synthetic spectro-polarimetric diagnostics of radiative MHD simulations of solar surface convection with magnetic fields. Stokes profiles of Zeeman-sensitive lines of neutral iron in the visible and infrared spectral ranges emerging from the simulated atmosphere have been calculated in order to study their relation to the relevant physical quantities and compare with observational results. We have analyzed the dependence of the Stokes-I line strength and width as well as of the Stokes-V signal and asymmetries on the magnetic field strength. Furthermore, we have evaluated the correspondence between the actual velocities in the simulation with values determined from the Stokes-I (Doppler shift of the centre of gravity) and Stokes-V profiles (zero-crossing shift). We confirm that the line weakening in strong magnetic fields results from a higher temperature (at equal optical depth) in the magnetic flux concentrations. We also confirm that considerable Stokes-V asymmetries originate in the peripheral parts of strong magnetic flux concentrations, where the line of sight cuts through the magnetopause of the expanding flux concentration into the surrounding convective donwflow.Comment: Astronomy & Astrophysics, in pres

    Wave vector dependence of the dynamics in supercooled metallic liquids

    Full text link
    We present a detailed investigation of the wave vector dependence of collective atomic motion in Au49Cu26.9Si16.3Ag5.5Pd2.3 and Pd42.5Cu27Ni9.5P21 supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectroscopy in a precedent uncovered spatial range of only few interatomic distances, we show that the microscopic structural relaxation process follows in phase the structure with a marked slowing down at the main average inter-particle distance. This behavior is accompanied by dramatic changes in the shape of the intermediate scattering functions which suggest the presence of large dynamical heterogeneities at length-scales corresponding to few particle diameters. A ballistic-like mechanism of particle motion seems to govern the structural relaxation of the two systems in the highly viscous phase, likely associated to hopping of caged particles in agreement with theoretical studies

    Mapping a 50-spin-qubit network through correlated sensing

    Full text link
    Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding a single electron-spin defect. However, the accessible size and complexity of these spin networks has been constrained by the spectral resolution of current methods. Here, we map a network of 50 coupled spins through high-resolution correlated sensing schemes, using a single nitrogen-vacancy center in diamond. We develop concatenated double-resonance sequences that identify spin-chains through the network. These chains reveal the characteristic spin frequencies and their interconnections with high spectral resolution, and can be fused together to map out the network. Our results provide new opportunities for quantum simulations by increasing the number of available spin qubits. Additionally, our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.Comment: 7 pages, 5 figure

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot

    VarFish - Collaborative and comprehensive variant analysis for diagnosis and research

    Get PDF
    VarFish is a user-friendly web application for the quality control, filtering, prioritization, analysis, and user-based annotation of panel and exome variant data for rare disease genetics. It is capable of processing variant call files with single or multiple samples. The variants are automatically annotated with population frequencies, molecular impact, and presence in databases such as ClinVar. Further, it provides support for pathogenicity scores including CADD, MutationTaster, and phenotypic similarity scores. Users can filter variants based on these annotations and presumed inheritance pattern and sort the results by these scores. Filtered variants are listed with their annotations and many useful link-outs to genome browsers, other gene/variant data portals, and external tools for variant assessment. VarFish allows user to create their own annotations including support for variant assessment following ACMG-AMP guidelines. In close collaboration with medical practitioners, VarFish was designed for variant analysis and prioritization in diagnostic and research settings as described in the software’s extensive manual. The user interface has been optimized for supporting these protocols. Users can install VarFish on their own in-house servers where it provides additional lab notebook features for collaborative analysis and allows re-analysis of cases, e.g., after update of genotype or phenotype databases

    A global optimization approach applied to structural dynamic updating

    Get PDF
    In this paper, the application of stochastic global optimization tech- niques, in particular the GlobalSearch and MultiStart solvers from MatLab®, to improve the updating of a structural dynamic model, are presented. For com- parative purposes, the efficiency of these global methods relatively to the local search method previously used in a Finite Element Model Updating program is evaluated. The obtained solutions showed that the GlobalSearch and MultiStart solvers are able to achieve a better solution than the local solver previously used, in the updating of a structural dynamic model. The results show also that the GlobalSearch solver is more efficient than the MultiStart, since requires less computational effort to obtain the global solution.Fundação para a Ciência e a Tecnologia (FCT

    Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.</p> <p>Methods</p> <p>Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.</p> <p>Results</p> <p>Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.</p> <p>Conclusion</p> <p>The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.</p
    • …
    corecore