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Abstract. In this paper, the application of stochastic global optimization tech-

niques, in particular the GlobalSearch and MultiStart solvers from MatLab®, to 

improve the updating of a structural dynamic model, are presented. For com-

parative purposes, the efficiency of these global methods relatively to the local 

search method previously used in a Finite Element Model Updating program is 

evaluated. The obtained solutions showed that the GlobalSearch and MultiStart 

solvers are able to achieve a better solution than the local solver previously 

used, in the updating of a structural dynamic model. The results show also that 

the GlobalSearch solver is more efficient than the MultiStart, since requires less 

computational effort to obtain the global solution. 

Keywords: Finite Element Model Updating, Global Optimization, Structural 

Dynamic 

1 Introduction 

Optimization problems can go from simple linear functions with few variables, un-

til the most complex problems of non-linear functions, with many variables, with 

constraints on the variables and many optimal local solutions [1]. 

Depending on the problem under study, local or global optimization methods can 

be used to find the maximum or minimum of a function. The selection of a method for 

a particular application depends on the characteristics of the problem and what is 

desired, such as type of design variables, whether or not all local minima are desired, 

and availability of gradients of the functions. Many engineering optimization prob-

lems are multimodal and require the application of global search methodologies, in 

order to avoid the optimizer to be trapped in the first minimum or maximum local 

found. The global search methodologies allow the optimizer to evolve into other areas 

of the feasible region, being possible to obtain more and best solutions.  
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There are two major classes of methods depending on whether or not they incorpo-

rate any stochastic elements to solve the global optimization problem: deterministic 

and stochastic methods.  

Deterministic methods provide a theoretical guarantee of locating the global mini-

mum. Stochastic methods only give guarantee in a probabilistic sense that the global 

minimum point will be found. On the other hand, stochastic methods are usually fast-

er in locating a global optimum than deterministic ones. In most global optimization 

algorithms (both deterministic and stochastic) it is possible to identify two phases: a 

global phase and a local phase. The exhaustive exploration of the search space is del-

egated to the global phase, where the function is evaluated at a number of randomly 

sampled points. In the local phase, the sample points are manipulated, by means of 

local searches, to yield a candidate global minimum [2]. For an introduction to deter-

ministic and stochastic methods in global optimization, see e.g. Horst and Tuy [3] and 

Törn and Zilinskas [4], respectively. 

There are some examples of application of deterministic methods in structural en-

gineering area, such as the work of Stolpe [5], that presents a branch-and-bound algo-

rithm for global optimization of the minimum weight stress-constrained truss topolo-

gy problem extended with displacement bounds and local buckling constraints. Later, 

using the same algorithm, Achtziger and Stolpe [6] developed a study to determine 

the optimal variables of a truss structure. However, Lin and Chen [7] emphasize that 

deterministic methods are based on assumptions of objective and constraint functions, 

and therefore the deterministic methods cannot be applied to general structural prob-

lems with satisfactory efficiency.  

Thus, the stochastic methods became relevant to solve the most global optimization 

problems, since they adapt better to real problems or black-box formulations, and they 

prove to be very useful for applications in the field of structural engineering optimiza-

tion problems, as for example, presented by Lucor [8]. They were inspired on natural 

environmental, biological, physical and chemical processes, composed by populations 

of individuals or elements that interact between them, and with their environment. 

The algorithms based on these natural phenomena are called Swarm Intelligence [9]. 

Those social behaviors have been crucial for the development of the random search 

methods and multi start methods. Some examples of application of these two sub-

classes of stochastic methods are the work of Lin and Chen [7] to study multistage 

optimization algorithms for simultaneously seeking multiple optimal solutions in a 

structural problem and Eriksson and Arora [10] to study the efficiency of three global 

stochastic optimization algorithms, with continuous variables, in the optimization of 

the ride comfort of a city bus. Within the stochastic methods are also the sub-class of 

evolutionary methods, such as Genetic Algorithms (GA), and Simulated Annealing 

(SA), used by Sonmez [11] to obtain multi optimal shapes for two-dimensional struc-

tures subject to quasi-static loads and restraints, and Venanzi e Materazzi [12] to op-

timize wind-excited structures. The hybridization of a genetic algorithm and a non-

smooth proximal bundle method is used in Auvinen et al. [13] to minimize the weight 

of a forest machine, and Keller [14] applied evolutionary algorithms to a case study of 

an air-plane’s side rudder.  



 

This paper intends to show the application of global stochastic optimization meth-

ods, in the structural engineering field, namely in the optimization of structural dy-

namic models with resort to methods of improving finite element models, usually 

denoted by Finite Element Model Updating. These improvements can be conducted 

under two types of approach: 

1. in the updating of simplified numerical models, representative of detailed physical 

models which present high computation time. The simplified model is submitted to 

updating by a Finite Element Model Updating methodology until obtain dynamic 

behavior similar to the physical model, also denominated as reference model [15]. 

Thus, it is possible to obtain a light computationally model and at the same time 

representative of the physical model. It is important to refer that, in these cases, the 

main interest is in the correlation of dynamic behavior, independently of the pa-

rameters values optimized;  

2. in the structural modification to the optimization of the models. Detailed numerical 

models of physical models are built and submitted to optimization to: improve the 

dynamic behavior and/or achieve a model with similar behavior but with geomet-

rical and/or physical parameters more advantageous from the design point of 

view [16]. 

The optimization methodologies help to fit on the control of updating process, nev-

ertheless still constitute a developing task. Important works in the Finite Element 

Model Updating area, using global stochastic optimization methods, could be found in 

Levin and Lieven [17], that compares various implementations of two algorithms, the 

GA and SA, to find the global minimum, amongst many local minima, of an objective 

function that describes the finite element model updating of a flat plate wing structure 

in the frequency domain. Teughels et al. [18] use the Coupled Local Minimizers 

(CLM) method in the Finite Element Model Updating program for the damage identi-

fication of a reinforced concrete beam. The method combines the fast convergence of 

the local gradient-based algorithms with the global approach of GA, resulting in an 

efficient global optimization algorithm, able to find the global minimum of the objec-

tive function. The same method was used by Bakir et al. [19] to update the finite ele-

ment model of a reinforced concrete frame, using 24 design variables. The authors 

compare the CLM method with different optimization local search methods, such as 

the Gauss–Newton method, Levenberg–Marquardt algorithm and Sequential Quad-

ratic Programming (SQP) algorithm, and prove that the global method gave better 

results. Ameri et al. [20] used the Globalized Bounded Nelder-Mead method to find 

the optimal fiber orientation of laminated cylindrical panels based on natural frequen-

cies by maximization of fundamental natural frequency. The obtained results show 

good accuracy and cost optimization when compared with results of GA. 

Following the same principles of the cited authors, and in order to improve the ef-

ficiency of a Finite Element Model Updating program, two global stochastic optimi-

zation techniques, the GlobalSearch and MultiStart commands available in Matlab
®
, 

are used and compared with each other when applied to the updating process of a 

structural model. The aim is to compare the obtained solutions with the local solutions 

previously obtained in the Finite Element Model Updating program, developed by 



 

Meireles [21,22]. This Finite Element Model Updating program, has implemented in 

its optimizer a local search method that uses the SQP algorithm performed through 

the fmincon command from Matlab
® 

to find the optimal global value. However, this 

implemented local search strategy, have difficulties to reach the global optimum, 

since it was developed to find local solutions. 

The organization of this paper is as follows. Section 2 presents the mathematical 

formulation of the problem. Section 3 describes the optimization process and the 

models description used in the optimization process are presented in Section 4. Sec-

tion 5 shows the computational experiments done with the local and the global solvers 

as well as a discussion of the obtained solutions. This paper is concluded in Section 6. 

2 Problem Formulation 

The optimization problem consists in the minimization of an objective function, re-

lated with the frequencies and respective mode shapes correlation between the refer-

ence model and the numerical model, defined as 

    ( )
             

  (1) 

where   is the vector with the updated parameters for the numerical model, and    , 

and     are the lower and upper bounds on the variables, respectively.  

The objective function of the optimization problem is defined by the sum of three 

specific functions, as  

 ( )     ( )     ( )    ( )  (2) 

where    ( ) represents the quantification of the difference between numerical and 

reference correlated mode pairs,    ( ) represents the quantification of the difference 

between numerical and reference uncorrelated mode pairs and   ( ) represents the 

quantification of the difference between numerical and reference frequencies.  
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where    is the number of correlated mode pair values of the diagonal     matrix 

and the vector    contains the initial updating parameters. The     matrix is defined 

by 

     ( )  
((  

   
)
 
  
   )

 

(( 
 
   

)
 
 
 
   

)((  
   )

 
  
   )

 (4) 

where,   
   

 is the ith reference mode shape and   
    is the  th numerical mode 

shape [22]. 



 

Function    ( ) is given by 

   ( )  (
 

  
)

∑ ∑      ( )
  
   
   

  
   

∑ ∑      ( 
 )

  
   
   

  
   

  (5) 

where    is the number of uncorrelated mode pairs values, outside of the diagonal 

    matrix. 

Function   ( ) represents the quantification of the difference between numerical 

and reference frequencies, given by 
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where    is the number of eigenvalues   corresponding to the correlated mode pairs, 

     is the reference frequency and      is the numerical frequency, respectively 

defined by      √      ⁄   and      √      ⁄ . The quadratic term in (6) is 

used to accelerate the convergence and to obtain only positive differences between the 

frequencies of the two models. Numerical mode shapes      and numerical eigen-

values      are function of these updating parameters. The relationship between 

them can be written as 

(         )   (             )  (7) 

where   is the number of updating parameters. The updated physical parameters  , 

that represent the best improvement of the numerical model, are obtained when the 

objective function (2) is minimized. 

3 Optimization Process 

The optimization process uses the interaction between Matlab
®
 and Ansys

® 
to im-

prove the dynamic characteristics of the numerical model calculating the objective 

function value and finding the optimal value of the physical parameters.  

The flowchart of the interaction algorithm between optimization method in 

Matlab® and Ansys® is represented in Fig.1. 

The first step of the structural optimization process is to idealize the desired behav-

ior of the dynamic model to develop, or collect experimental data of a physical model 

considered as the reference model. The next step is associated with the construction of 

a numerical model in the finite element program ANSYS
®

, that should describe the 

idealized dynamic model from which its dynamic characteristics are obtained. These 

dynamic characteristics are transferred to the optimizer of the Finite Element Model 

Updating program developed in MatLab
®
, in order to optimize the dynamic behavior 

of the numerical model when compared to the reference model. It is considered that 



 

the type of structure, in that this methodology is applicable, is sufficiently rigid that 

the damping can be neglected. 

 

 

Fig. 1. Interaction flowchart between Matlab® and Ansys® 

In this study, the Finite Element Model Updating program, implemented in 

MatLab
®
, uses a global solver, provided by the Global Optimization Toolbox [23] that 

searches for the optimal global value of the objective function (1). Two global solvers 

are used in the optimization process, performed by GlobalSearch and MultiStart 

commands, in order to test its efficiency and effectiveness in the updating process of a 

structural model. A prior version of the Finite Element Model Updating program uses 

the local solver, provided by the command fmincon from Matlab [21,22]. Following, 

the referred commands are briefly introduced. 

The fmincon command aims to find a minimum of a constrained problem of multi-

ple variables. Given an initial starting point, this solver can work with four algorithms 

type: active-set, interior-point, SQP and trust-region-reflective. As described in [23], 

the active-set and SQP algorithms work of similar way. In these algorithms, a Quad-

ratic Programming subproblem is solved, where, at each iteration, the BFGS 

(Broyden–Fletcher–Goldfarb–Shanno) formulae is used to estimate the Hessian of the 

Lagrangian function. The interior-point algorithm is an approach to solve a sequence 

of approximate minimization problems. The trust-region-reflective algorithm is a 

subspace trust-region method and is based on the interior-reflective Newton method. 

Here, each iteration involves the approximate solution of a large linear system using 

the method of Preconditioned Conjugate Gradients. A work with application of this 

method can be found in Voormeren and Rixen [24]. 

GlobalSearch and MultiStart implement stochastic search methods and are similar 

when finding global or multiple solutions. Both algorithms use multiple start points to 

sample multiple basins of attraction and start a local solver, such as fmincon, from a 

variety of starting points and store local and global solutions found during the search 

process. Generally the starting points are random.  

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/


 

The GlobalSearch solver performs in two phases: a local phase and a global phase. 

In the local phase, the sampled points, randomly obtained, are manipulated by a local 

search to find candidates for local minimum. In the global phase the local minimum 

with best objective function value is used as an approximation to the global optimum. 

The solver uses a scatter search strategy in order to generate the trial points. Then, it 

analyzes the start points and rejects all of those that are unlikely to improve the best 

local minimum found so far. 

The MultiStart solver uses uniformly distributed start points within bounds, or us-

er-supplied start points. Then, it runs the local solver at all start points, or, optionally, 

all start points that are feasible with respect to bounds or inequality constraints. 

4 Models Description 

In this section the models description is presented, where a numerical model will 

be optimized taking into account a reference model from which are extracted the ref-

erence values of mode shapes and respective natural frequencies.  

4.1 Reference Model 

The reference model is a steel sheet with dimensions 200x300x10 mm
3
, represent-

ed by width (w), height (h) and thickness (t), as shown in Fig.2. 

 

 

Fig. 2. Reference model 

This model is built in ANSYS
®
 with shell elements (SHELL63), and is submitted 

to modal analysis for extraction of mode shapes measured in 24 points and respective 

natural frequencies. The mechanical properties of the steel sheet are presented in Ta-

ble 1. 



 

Table 1. Mechanical properties of the reference model 

Property Symbol Units Value 

Young’s Module  Ex Pa 2.1x1011 

Young’s Module  Ey = Ez Pa 2.2x1011 

Poisson’s Ratio  υxy = υyz = υzx - 0.27 

Density  ρ kg/m3 7847 

4.2 Numerical Model 

The numerical model to be optimized has a set of 240 areas of variable geometry, 

as shown in Fig.3. The areas are created from points, some with variable coordinates, 

enabling the change of all areas of the model. The points with variable coordinates are 

function of the geometrical parameters: width (wa) and height (hb). The coordinates of 

the points chosen for reading the mode shapes are kept constant in order to coincide 

with the readings of reference. 

 

 

Fig. 3. Initial numerical model 

The numerical model built in ANSYS
®
 with shell elements (SHELL63), has the 

mechanical properties presented in Table 1. The width (w), height (h) and thickness 

(t) dimensions are equal to the reference model, represented in Fig.2. The numerical 

model will be submitted to modifications of geometric parameters, such as thickness 

(t), width (wa) and height (hb), through the optimization process in the Finite Element 

Model Updating program. The initial values of the parameters and their lower and 

upper bounds are indicated in Table 2. 

Table 2. Parameters vector of the numerical model 

Property Variable Units 
Initial 

Value 

Lower 

bound 

Upper 

bound 

Thickness t mm 10 1 20 

Width a wa mm 10 10 19 

Height b hb mm 10 10 24 



 

It is expected that the optimal value of width (wa) and height (hb) variables, have a 

clear tendency to converge to the upper bound, in order to fill the empty spaces of the 

steel sheet.  

5 Computational Experiments 

In this section the numerical model is optimized and the computational results are 

presented. First, the solutions obtained with the local solver fmincon are showed, and 

then the ones with each of the global solver, GlobalSearch and MultiStart. 

The local solver fmincon is performed on the supplied initial point    with the ac-

tive-set, interior-point, SQP and trust-region-reflective algorithms. The GlobalSearch 

solver is performed with 100 and 400 trial points, where the number of points ana-

lyzed in stage one is 100 and 400, respectively. So, the GlobalSearch applies the 

fmincon solver, first, in the supplied initial point    and, second, in the starting points 

defined in the option NumStageOnePoints, making only an initial assessment of the 

score function of each one. Finally the GlobalSearch applies the fmincon solver in the 

point with best score. Therefore, the GlobalSearch solver makes complete evaluation 

in only two points, in the supplied initial point    and in the best starting point among 

the trial points of stage one. The MultiStart solver is performed with 10 and 20 trial 

points, and fmincon solver is executed in all of them, and the evaluation is complete 

for all of them. All the others optional parameter values of the optimization solvers 

have the default values. 

5.1 Local Solver Results 

For the local solver fmincon analysis, the search is only performed on the starting 

point    and theoptimization results are presented in Table 3. 

Table 3.Optimization results for fmincon solver 

Output active-set interior-point SQP trust-region 

Nr. function evaluations 162 138 239 162 

Optimization time [h] ~1.700 ~1.500 ~2.500 ~1.700 

x local [mm] 

t 10.160 

14.582 

14.881 

10.158 

14.677 

14.843 

10.142 

15.318 

14.528 

10.160 

14.582 

14.881 

wa 

hb 

Optimal local value f(x) 4.402 4.401 4.393 4.402 

 

The best optimal value found, 4.393, is achieved by SQP algorithm. With the other 

algorithms the optimal value of  ( ) is very similar between them. The solver re-

quires 239 function evaluations and 2.5 hours to achieve the best optimal local value 

of the objective function. 



 

5.2 GlobalSearch Solver Results 

In the GlobalSearch solver analysis, there are, in general, improvements relatively 

to the local solver solution. In the first experiment, with 100 trial points, where opti-

mization results are presented in Table 4, the SQP algorithm obtains the optimal value 

of 4.163, which means an improvement of 5.236% when compared with the optimal 

solution obtained with the local search method (4.393). With the other algorithms, 

only the interior-point achieves a slight improvement of 0.068% when compared with 

the value obtained with the same algorithm (4.401). With the active-set and trust-

region-reflective algorithms do not found any improvement there. The Globalsearch 

solver with the SQP algorithm requires 532 function evaluations and 5.5 hours to 

achieve the best optimal global value, requiring approximately twice more (120%) of 

optimization time and function evaluations than with the local solver. 

Table 4. Optimization results for GlobalSearch with 100 trial points 

Output active-set interior-point SQP trust-region 

Nr. function evaluations 526 505 532 526 

Optimization time [h] ~5.500 ~5.200 ~5.500 ~5.500 

x global [mm] 

t 10.160 

14.582 

14.881 

10.152 

14.878 

14.762 

9.990 

19.000 

10.000 

10.160 

14.582 

14.881 

wa 

hb 

Optimal global value f(x) 4.402 4.398 4.163 4.402 

 

When using 400 trial points (see Table 5), the results are about the same although a 

large computational time (more than double).  

Table 5. Optimization results for GlobalSearch with 400 trial points 

Output active-set interior-point SQP trust-region- 

Nr. function evaluations 1149 1224 1168 1215 

Optimization time [h] ~12.500 ~13.300 ~12.800 ~13.200 

x global [mm] 

t 10.145 

15.137 

14.645 

10.135 

15.440 

14.517 

9.990 

19.000 

10.000 

10.138 

15.389 

14.511 

wa 

hb 

Optimal global value f(x) 4.394 4.391 4.163 4.392 

 

The active-set algorithm achieves a little improvement of 0.182% compared with 

the value obtained with the local solver (4.402). The interior-point and trust-region-

reflective algorithms achieve a slight improvement of 0.227% compared with the 

value obtained with the local solver (4.401 and 4.402, respectively). The optimal 

global value obtained with the SQP algorithm remains in 4.163. The solver requires 

1168 function evaluations and 12.8 hours to achieve the best optimal global value of 

the objective function, needing approximately five times more (412%) of optimization 

time and function evaluations than with the local solver. 



 

5.3 MultiStart Solver Results 

In the MultiStart solver analysis, when the search is performed with 10 trial points 

(see results in Table 6), the four algorithms have a favorable evolution, when com-

pared to local solver results. The active-set and trust-region-reflective algorithms 

achieve a slight improvement of 0.250% compared with the value obtained with the 

local solver (4.402). The interior-point algorithm achieves a little improvement of 

0.182% compared with the value obtained with the local solver (4.401). The SQP 

algorithm achieves an improvement of 5.236% compared with the value obtained 

with the local solver (4.393) and achieve the best optimal global value of function f(x) 

(4.163). The solver requires 1735 function evaluations and 19 hours to achieve the 

best optimal global value of the objective function, needing approximately 7.6 times 

more (660%) of optimization time and function evaluations than with the local solver. 

Table 6. Optimization results with MultiStart for 10 trial points 

Output active-set interior-point SQP trust-region- 

Nr. function evaluations 1553 1628 1735 1665 

Optimization time [h] ~17.000 ~17.800 ~19.000 ~18.200 

x global [mm] 

t 10.135 10.140 9.990 10.137 

wa 15.433 15.279 19.000 15.400 

hb 14.519 14.596 10.000 14.522 

Optimal global value f(x) 4.391 4.393 4.163 4.391 

 

When executing MultiStart with 20 trial points, where results are presented in Ta-

ble 7, the improvements are more evident relatively to the ones obtained with the 

local solver.  

Table 7. Optimization results with MultiStart for 20 trial points 

Output active-set interior-point SQP trust-region- 

Nr. function evaluations 3588 2887 3804 3200 

Optimization time [h] ~39.200 ~31.500 ~41.600 ~35.000 

x global [mm] 

t 9.990 10.135 9.990 9.990 

wa 19.000 15.444 19.000 19.000 

hb 10.000 14.513 10.000 10.000 

Optimal global value f(x) 4.163 4.391 4.163 4.163 

 

The optimal value of function  ( ) improves 5.429% with active-set and trust-

region-reflective algorithms compared with the value obtained with the local solver 

(4.402). The interior-point algorithm improves slightly 0.227% compared with the 

value obtained with the local solver (4.401). The optimal global value obtained with 

SQP algorithm remains in 4.163. The solver requires 3200 function evaluations and 

35 hours to achieve the best optimal global value of the objective function with the 

trust-region-reflective algorithm, needing approximately 14 times more (1300%) of 

optimization time and function evaluations than with the local solver. 



 

5.4 Discussion of Results 

Following the discussion of results is presented for local and global solutions. 

Local Solution Discussion 

In general, the local solver fmincon converges to a good solution for the four algo-

rithms, achieving a correlation of mode shapes and natural frequencies, between the 

reference and numerical model, with good quality. 

The color graphs of Fig.4 represent the MAC matrix and frequencies matrix, and 

quantifies the correlation among the reference and numerical model. In     matrix 

the diagonal should be as dark as possible and bright outside of the diagonal, to repre-

sent a good correlation among mode shapes, and the frequencies matrix should be as 

bright as possible to represent a good correlation among the frequencies. 

 

 

Fig. 4. Initial correlation 

The value of first function evaluation, for any used algorithms, is 23.042, because 

the initial point    is the same for all cases. This value has the meaning of the geo-

metric distance between the reference model and initial numerical model, imposed by 

initial variables of point   .This originates a weak correlation between, mainly, the 

natural frequency values of the two models, since the correlation between all mode 

shapes in diagonal MAC matrix is quite close to the unit, as shown in Fig.4. 

After the optimization is complete, the quality of the natural frequencies correla-

tion improves considerably, and reveals a slight improvement in MAC matrix, as 

shown in Fig.5a. The SQP algorithm is the one that achieves the best optimal value of 

objective function, and consequently, the best correlation among the two models. 

The final numerical model, presented in Fig.5b, suffers significant changes due to 

the convergence of width (wa) and height (hb) parameters to the upper bounds. As the 

thickness (t) parameter suffers a small change in relation to the initial value, the nu-

merical model is now closer to the reference model, both geometrically and in terms 

of its dynamic behavior. 

 



 

 

Fig. 5. a) Best correlation for local optimization; b) Best final numerical model for local opti-

mization 

Global Solution Discussion 

The global solvers, GlobalSearch and MultiStart are able to converge to a better 

solution than with the local solver fmincon, since we are facing a multimodal problem 

and they are prepared to find global solutions. 

The MultiStart solver is the one that reveals more robustness in the set of the four 

algorithms. With 10 trial points, just the SQP algorithm is able to achieve the best 

optimal value of objective function (4.163), but with 20 trial points just interior-point 

algorithm does not achieves this value. The GlobalSearch solver does not reveal as 

robust as the MultiStart solver, because just the SQP algorithm is able to obtain the 

best optimal value of objective function  ( ). Despite the higher number of trial 

points, the GlobalSearch solver has the advantage of being able to select the best trail 

points among the starting points defined in the option NumStageOnePoints and reject 

the others. The solution obtained with the GlobalSearch solver using 100 trial points 

saves optimization time and function evaluations in approximately 3.5 times (245.5%) 

face to MultiStart solver with 10 trial points and approximately 6.4 times (536.4%) 

face to MultiStart solver with 20 trial points. Hence, the GlobalSearch solver is more 

efficient than Multistart since requires less computational effort to obtain the global 

solution. 

The quality of the correlation between mode shapes and natural frequencies of the 

two models is presented in Fig.6a and illustrates the improvement relatively to the 

local solver when using a global solver. 

The final numerical model, presented in Fig.6b, is closer to the reference model 

because the width (wa) parameter converges for the upper bound value. The height 

(hb) parameter keeps the initial value, and the thickness (t) parameter suffers a small 

change, with regard to initial value, and converges to the lower bound. This parameter 

together with the other two, originates a final numerical model with very similar ge-

ometry and dynamic behavior in relation to the reference model. 

 



 

 

Fig. 6. a) Best correlation for global optimization; b) Best final numerical model for global 

optimization 

6 Conclusions 

The aim of this paper was to apply two stochastic global optimization techniques 

for the optimization of a dynamic structural finite element model, and to establish a 

comparison with the previously local search method used in the Finite Element Model 

Updating program. The global solvers have the advantage of being able to work with 

a higher number of trial points, and therefore, are more efficient than the local solver. 

The two global solvers tested work in a different way, and therefore the results may 

also be different. Both global solvers achieve the same optimal global value of the 

objective function, requiring, however, different optimization times and function 

evaluations. In this case, the GlobalSearch is the fastest solver to achieve the best 

optimal global value when working with the SQP algorithm. The MultiStart solver 

achieved the same best optimal global value with the active-set, SQP and trust-

region-reflective algorithms however needed six times more computational effort in 

terms of execution time and number of function evaluations. 

The example used can be considered too oriented, which may increase the possibil-

ity of convergence of the local method, and somehow reduce the ability of perception 

of higher capacity of global methods. However, it was evident the evolution of the 

final numerical model to get closer to the geometry of the reference model when ap-

plied global optimization techniques. 

In the future, more complex models will be studied and the use of stochastic global 

optimization methods based on Swarm Intelligence will be investigated. 
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