17 research outputs found

    Cavity-enhanced optical detection of carbon nanotube Brownian motion

    Get PDF
    Optical cavities with small mode volume are well-suited to detect the vibration of sub-wavelength sized objects. Here we employ a fiber-based, high-finesse optical microcavity to detect the Brownian motion of a freely suspended carbon nanotube at room temperature under vacuum. The optical detection resolves deflections of the oscillating tube down to 50pm/Hz^1/2. A full vibrational spectrum of the carbon nanotube is obtained and confirmed by characterization of the same device in a scanning electron microscope. Our work successfully extends the principles of high-sensitivity optomechanical detection to molecular scale nanomechanical systems.Comment: 14 pages, 11 figure

    Cavity cooling of a nanomechanical resonator by light scattering

    Full text link
    We present a novel method for opto-mechanical cooling of sub-wavelength sized nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of small mode volume, within which the nanoresonator is acting as a position-dependant perturbation by scattering. In return, the back-action induced by the cavity affects the nanoresonator dynamics and can cool its fluctuations. We investigate such cavity cooling by scattering for a nanorod structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure

    Fluctuating nanomechanical system in a high finesse optical microcavity

    Get PDF
    The idea of extending cavity quantum electrodynamics experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling and optomechanics of deformable cavities. Here we present an experiment involving a single nanorod consisting of about 109^{9} atoms precisely positioned into the confined mode of a miniature high finesse Fabry-Pérot microcavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. The Brownian motion of the nanorod is resolved with a displacement sensitivity of 200 fm/√Hz at room temperature. Besides a broad range of sensing applications, cavity-induced manipulation of optomechanical nanosystems and back-action is anticipated

    Ultrasensitive force detection with a nanotube mechanical resonator

    Get PDF
    Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultra-sensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.Comment: Early version. To be published in Nature Nanotechnolog
    corecore