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1 Introduction

Lasers are indispensable tools in science and technol-
ogy today. They heal eyes, power the Internet, and print 
objects in 3D. They have also revolutionized atomic phys-
ics: Techniques such as laser cooling and optical frequency 
metrology have enabled the creation of new states of mat-
ter, precision tests of fundamental physical laws, and the 
construction of clocks more accurate than ever before. The 
lasers’ key feature—high spatial and temporal coherence 
of the emitted light—is a unique asset, too, for the meas-
urement of distance and motion. The laser interferometric 
gravitational wave observatory (LIGO) has provided the 
most recent, spectacular demonstration of this fact, with the 
direct detection of gravity waves [1].

While LIGO is concerned with the apparent displacement 
of kg-scale test masses, laser-based techniques are also an 
excellent choice to track the motion of micro- and nanoscale 
objects. Indeed, lasers have been used to measure a micro-
cantilever’s motion induced by the magnetic force of a single 
electron spin [2], providing only one example of the force 
and mass sensing capabilities of laser-transduced mechani-
cal devices. The interaction of laser light and nanomechani-
cal motion, which lies at the heart of any such measurement 
scheme, has, itself, moved to the center of attention recently. 
Research in the field of cavity optomechanics [3] explores 
the fundamental mechanisms—governed by the laws of 
quantum mechanics, of course—and the limitations and 
opportunities for mechanical measurements that they imply. 
Without even making an attempt at a comprehensive review 
of the vast activity in this field, we illustrate recent progress 
through a selection of our own results below.

For this research, it is often crucial to understand not 
only the spectral properties of the mechanical resonators, 
such as their eigenmodes’ frequency and lifetime, but also 

Abstract We discuss several techniques based on laser-
driven interferometers and cavities to measure nanome-
chanical motion. With increasing complexity, they achieve 
sensitivities reaching from thermal displacement ampli-
tudes, typically at the picometer scale, all the way to the 
quantum regime, in which radiation pressure induces 
motion correlated with the quantum fluctuations of the 
probing light. We show that an imaging modality is read-
ily provided by scanning laser interferometry, reaching a 
sensitivity on the order of 10 fm/Hz1/2, and a transverse 
resolution down to 2µm. We compare this approach with 
a less versatile, but faster (single-shot) dark-field imaging 
technique.

Electronic supplementary material The online version of this 
article (doi:10.1007/s00340-016-6585-7) contains supplementary 
material, which is available to authorized users.

This article is part of the topical collection “Enlightening the 
World with the Laser” - Honoring T. W. Hänsch guest edited by 
Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This article is dedicated to Theodor W. Hänsch on the occasion 
of his 75th birthday. Fortunate enough to have several chances 
to work with him, I could learn about his unique approach 
to experimental science. The first bit came right during my 
interview for a PhD position: When somebody claimed that all 
simple interesting things had already been done, he insisted that 
great experiments do not have to be complicated—if they are 
clever. It felt wise already then, now I know (better) how true it 
is. And I’m looking forward to seeing more clever experiments 
emerge from the Munich laboratories. Happy Birthday!

 * Albert Schliesser 
 albert.schliesser@nbi.dk

1 Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, 
Denmark

http://orcid.org/0000-0003-4317-5030
http://crossmark.crossref.org/dialog/?doi=10.1007/s00340-016-6585-7&domain=pdf
http://dx.doi.org/10.1007/s00340-016-6585-7


A. Barg et al.

1 3

8 Page 2 of 8

the modes’ spatial displacement patterns, as it determines 
the effective mass meff, and therefore the optomechanical 
interaction strength. The pattern can also strongly affect 
the modes’ coherence properties. Both are particularly 
important for the development of new resonator systems. 
For example, the full knowledge of the mode shape has 
allowed us to design resonators with a “soft” phononic crys-
tal clamping that enables unprecedented room-temperature 
quality factors Q > 108 at MHz frequencies [4]. While 
finite-element simulations of mechanical modes become 
ever more powerful and accurate, they often miss fabrica-
tion imperfections and substrate effects that can lead to bro-
ken symmetries or mode hybridization, among others. For 
this reason, we have developed several laser-based imaging 
techniques of micro- and nanomechanical devices. In this 
article, we provide a description of these highly useful tools.

2  Laser interferometry and spectroscopy

A simple two-path interferometer (Fig. 1a) constitutes the most 
straightforward approach to measuring mechanical displace-
ments. One arm’s path involves the reflection off the mechani-
cal device’s surface, so that its motion modulates the path 
length difference between the two arms. If the interferometer 
is biased to the optimum point, it can detect displacement (dou-
ble-sided) spectral densities Sxx down to a level of [5]

(1)S1/2xx =
�

2π

1
√
ηdP/�ω

.

It is limited by the quantum phase uncertainty of the coher-
ent state that the laser emits, referred to as the measurement 
imprecision. Here, �, ω, and P are the wavelength, angular 
frequency, and power of the employed laser light, respec-
tively. ηd is the detection efficiency, which also absorbs 
penalties in the sensitivity due to optical losses, insufficient 
interference contrast, etc. Equation (1) implies that within 
a bandwidth BW, the smallest displacements that can be 
recovered with unity signal-to-noise ratio are given by 
δxmin/

√
BW =

√
Sxx.

Our instrument (detailed below ) employs a near-infra-
red laser and mW-scale probing powers and typically 
achieves a S1/2xx ∼ 10 fm/

√
Hz displacement sensitivity, 

consistent with Eq. (1). This compares favorably with the 
picometer-scale thermal root-mean-square (RMS) displace-
ment δxth =

√

kBT/meffΩ
2
m of the mechanical resona-

tors we employ [4, 6], with nanogram mass meff and MHz 
frequency Ωm/2π at room temperature T. In the Fourier 
domain, the spectral density of the thermal motion is spread 
over the mechanical linewidth Γm = Ωm/Q. Correspond-
ingly, a nearly four-order-of-magnitude signal-to-noise 
ratio Sthxx(Ωm)/Sxx between the peak thermal displacement 
spectral density Sthxx(Ωm) =

δx2th
Γm/2

 and the noise background 
Sxx can be reached already with quality factors in the mil-
lions. An example for such a measurement is shown in 
Fig. 1a.

This sensitivity is insufficient, however, for the detec-
tion of displacements at the level of the mechanical RMS 
zero-point fluctuations δxzpf =

√
�/2meffΩm, which are at 

the femtometer level for the parameters discussed above. 

(a) (b) (c) (d)

Fig. 1  Probing mechanical motion δx(t) by laser interferom-
etry. a Simple two-path interferometer, involving reflection off the 
mechanical device (top). The thermal motion (blue trace) of a high-
Q membrane is readily resolved above the measurement imprecision 
background (gray). b Cavity-enhanced measurement, here of a radial-
breathing mode of an optical whispering-gallery-mode resonator 
(top). Thermal motion (red trace) is far above the imprecision back-
ground (gray), which is itself below the resonant standard quantum 
limit (SQL) for this mechanical mode (from [10]). c Cavity-based 

measurements of highly coherent mechanical resonators, here a high-
Q silicon nitride membrane placed inside a Fabry–Perot resonator 
(top). Quantum backaction starts to dominate over the thermal motion 
of the device, inducing correlations that lead to squeezing of the out-
put light (violet trace) below the vacuum noise (gray), among oth-
ers (from [20]). d Comparison of the relative levels of measurement 
imprecision, backaction, and thermomechanical noise in the measure-
ment regimes depicted in the examples (a)–(c)
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An optical cavity is needed to enhance the interaction 
between light and motion, recycling the light for a number 
of roundtrips that is commensurate with the finesse F  of 
the cavity. The phase shift of the light emerging from the 
cavity is multiplied correspondingly, allowing more sensi-
tive detection with the same amount of laser light. In the 
simplest case of resonant probing (ω = ωc, the cavity reso-
nance frequency), the quantum imprecision noise is equiva-
lent to displacement spectral densities of [7]

for a Fabry–Perot resonator with a moving end mirror (in 
the case of a whispering-gallery-mode resonator whose 
radius is measured, � → �/π). Note that the sensitivity 
now acquires a dependence on the Fourier frequency Ω , 
here a simple cutoff behavior for frequencies larger than 
the cavity half linewidth κ/2, as well as the degree of cavity 
overcoupling ηc.

Figure 1b shows an example of such a measurement, 
in this case performed on the radial-breathing mode of a 
silica whispering-gallery-mode resonator [7], with the help 
of a polarization spectroscopy technique [8]. It resolves 
not only thermal motion with a large signal-to-noise ratio 
(here, about 58 dB), but also achieves an imprecision noise 
below that at the resonant standard quantum limit (SQL), 

S
SQL
xx (Ωm) =

δx2zpf
Γm/2

. Note that this coincides with the peak 
spectral density of ground-state fluctuations [9], for this 
device with Ωm/2π = 40.6MHz, Γm = 1.3 kHz and 
meff = 10 ng at the level of SSQLxx (Ωm) = (2.2 am)2/Hz 
[10].

Cavity-enhanced laser interferometry has also been 
applied to nanomechanical resonators all the way down to 
the molecular scale. For example, it was shown that a fiber-
based optical microcavity can resolve the thermal motion 
of carbon nanotubes [11]. Another successful sensing 
scheme consists in introducing nanomechanical resonators 
in the near field of optical whispering-gallery-mode resona-
tors. It achieves imprecision well below that at the SQL of 
stressed silicon nitride nanostrings with picogram masses 
and Q ∼ 106 [12–14]. It is also expected that optical cavi-
ties suppress diffraction losses through preferential scatter-
ing into the cavity mode.

To track or steer coherent dynamics of mechanical reso-
nators at the level of their vacuum fluctuations, yet higher 
sensitivities are required [14]. In particular, it is necessary 
to resolve the ground state—which entails averaging for a 
time 4Sxx/x2zpf—before it decoheres, e.g., by heating. The 
latter happens at a rate nthΓm, where nth = kBT/�Ωm ≫ 1 
is the mean occupation of the dominant thermal bath at tem-
perature T. It follows from Eq. (2) that a resolution at the 

(2)S1/2xx (Ω) =
�

16ηcF

1
√
ηdP/�ω

√

1+
(

Ω

κ/2

)2

,

level of the zero-point-fluctuations is acquired at the meas-
urement rate [9] Γopt = 4g2/κ, where g = xzpf(∂ωc/∂x)a , 
and |a|2 the number of photons in the cavity (assuming 
ηcηd = 1, Ω ≪ κ). The above-mentioned requirement can 
then be written as Γopt � nthΓm.

Interestingly, a completely new effect becomes relevant 
in this regime as well: the quantum fluctuations of radia-
tion pressure linked to the quantum amplitude fluctuations 
of the laser light, representing the quantum backaction of 
this measurement [15]. And indeed the ratio of radiation 
pressure to thermal Langevin force fluctuations is given by 
S
qba
FF (Ωm)

SthFF (Ωm)
= Γopt

nthΓm
. While these force fluctuations induce ran-

dom mechanical motion that can mask a signal to be meas-
ured, it is important to realize that motion and light become 
correlated, at the quantum level, via this mechanism. As 
a consequence, the mere interaction of cavity light with a 
nanomechanical device can induce optical phase–ampli-
tude quantum correlations, which squeeze the optical quan-
tum fluctuations, in a particular quadrature, below the level 
of the vacuum noise. This effect is referred to as pondero-
motive squeezing [16–19].

An example of this phenomenon is shown in Fig. 1c 
[20]. A 1.928-MHz nanomechanical membrane resona-
tor of dimensions (544µm)2 × 60 nm is placed in a laser-
driven high-finesse optical cavity and thereby measured at 
a rate of Γopt/2π = 96 kHz. Its decoherence rate is reduced 
to nΓm/2π ≈ 20 kHz, by cooling it in a simple cryostat to 
T = 10K. A slight detuning of the laser field with respect 
to the optical resonator (� = ω − ωc = −2π × 1.4MHz) 
leads to further cooling of the mechanical mode [21–24], 
akin to Doppler cooling of atomic gases [25]—here to a 
mean occupation of neff ∼ 5. It also allows direct observa-
tion of the squeezing in the amplitude fluctuations of the 
light emerging from the resonator: Its normalized spectral 
density assumes the form

Note that the second term represents the correlations, which 
can assume negative values and thus lead to noise below the 
vacuum level SoutXX = 1 (χeff is the effective mechanical sus-
ceptibility [3]). Ponderomotive squeezing down to −2.4 dB 
has been observed, the strongest value so far, and simulta-
neous squeezing in a multitude of mechanical modes [20]. 
Schemes that exploit such quantum correlations for sub-
SQL measurements of displacement and forces are subject 
of ongoing research [26–28].

The above examples show that laser-based measure-
ments resolve the motion of nanomechanical oscillators 

(3)

SoutXX (Ω) ≈ 1− 2
8�

κ
ΓoptRe{χeff(Ω)}+

+
(

8�

κ

)2

Γopt|χeff(Ω)|2
(

Γopt + nthΓm

)

.
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all the way to the level of their vacuum fluctuations. In a 
simple classification (Fig. 1d), basic interferometers can 
readily resolve thermal motion, as required in many sens-
ing and characterization experiments. Cavity-enhanced 
approaches achieve imprecision below the resonant SQL. 
To measure and control motion at the quantum level, dis-
placements at the scale of the vacuum fluctuations must be 
resolved within the coherence time of the mechanical reso-
nator. Then the imprecision (of an ideal setup) is more than 
nth times below the resonant SQL, and quantum backaction 
exceeds thermal force fluctuations and induces quantum 
correlations [3, 9].

While the above-described techniques can be consid-
ered variants of laser interferometry, there are a num-
ber of techniques to characterize mechanical devices that 
are laser spectroscopic in nature. A prominent example 
is optomechanically induced transparency (OMIT), first 
described in Refs. [29, 30]. It consists in the observation 
that a laser-driven cavity containing a dispersively cou-
pled mechanical device will have a modified transmission 
spectrum for a second “probe” laser beam at the frequency 
ωp = ω +Ωm +�′, where |�′| � κ is the two-photon 
detuning. The intracavity probe field,

in the simplest case −� = Ωm ≪ κ, encodes the coupling 
strength g. It is thus possible to derive g, for example, from 
probe transmission measurements [31, 32].

3  Laser‑based imaging

As already indicated, it can be of great interest to also spa-
tially resolve mechanical displacement patterns. With laser 
light, this can be accomplished in an extremely sensitive 
and virtually non-perturbing manner [33–37]. In the fol-
lowing, we present two methods that we have implemented 
for characterizing nano- and micromechanical resonators 
with micrometer transverse resolution, sufficient for resolv-
ing the spatial patterns of MHz mechanical modes.

3.1  Scanning laser interferometry

The first setup, shown in Fig. 2, is a Michelson interferom-
eter based on a Nd:YAG laser at � = 1064 nm. A polariz-
ing beam splitter (PBS1) splits its output into two interfer-
ometer arms. In one arm, a single-mode fiber guides light 
to a probe head mounted on a motorized 3-axis transla-
tion stage. The probe head (Fig. 2a) consists of a micro-
scope objective focusing the laser light to a spot of diam-
eter ∼ 2µm on the sample and a CMOS camera capturing 

(4)ap ∝
√
κ

(−i�′ + κ/2)+ g2

−i�′+Γm/2

images of the sample in real time. To reduce viscous (gas) 
damping of the nanomechanical motion, the sample is 
placed inside a high vacuum chamber at a pressure of 
< 10−5 mbar. A piezoelectric shaker (PZT1) can excite 
mechanical eigenmodes (Fig. 2b).

Light reflected off the sample is spatially overlapped 
with the local oscillator from the other interferometer arm 
in PBS1 (Fig. 2c). Projection on a common polarization 
basis subsequently enforces interference in a second polar-
izing beam splitter (PBS2), whose outputs are monitored 
with a high-bandwidth (0− 75 MHz) InGaAs-balanced 
receiver. This configuration ensures shot-noise-limited 
detection of the reflected light when a typical ∼ 800µW 
beam is sent to the sample. In the correct polarization base, 
one obtains a receiver signal Vff cos(φ), where φ is the rela-
tive phase between the two beams and Vff is the full fringe 
voltage, which we check with an oscilloscope (Fig. 2d). For 
maximal transduction, φ is actively stabilized to the mid-
fringe position by means of a mirror mounted on a piezo-
electric transducer in the local oscillator arm (PZT2) and a 
proportional-integral (PI) feedback control.

In this case, small measured voltages δV(t) ≪ Vff con-
vert to displacement via δx(t) ≈ ±δV(t)�/4πVff. Modulat-
ing PZT2 continuously with known frequency and ampli-
tude generates a reference displacement and provides an 
independent calibration tone (CT) in the spectra.

(a)

(b)

(c)

(d)

Fig. 2  Setup for interferometric imaging of mechanical motion. a 
Probe head with microscope objective mounted on a motorized 3-axis 
translation stage to position a focused laser spot on the sample. The 
sample is imaged simultaneously onto a CMOS camera via a beam 
splitter (BS) and a lens. b Sample placed on top of a piezo (PZT1) 
inside a high vacuum chamber. c Main part of the Michelson inter-
ferometer. A balanced receiver (detectors D1 and D2) measures the 
relative phase between the light returned from the sample and the 
reference arm. Electronic feedback to a piezomounted mirror (PZT2) 
stabilizes this phase with a low (� 10 kHz) bandwidth. d Signal from 
the balanced receiver as a function of time while scanning (blue) and 
actively stabilizing (purple) the relative phase
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As a first example, Fig. 3 shows a raster scan of a stoi-
chiometric silicon nitride (SiN) membrane with side length 
l = 1mm. We scan the membrane surface with the probe 
head using stepper motor actuation and record traces δx(t) 
at each of the 22× 22 positions. The traces are spectrally 
filtered around the peaks of several mechanical modes via 
digital post-processing. In this manner, we extract RMS 
displacements of each mechanical eigenmode in each 
scan pixel. Figure 3 shows the corresponding displace-
ment maps for the modes, which are thermally excited at 
room temperature (PZT1 off). The measured mode patterns 

compare well with the hybridized eigenmodes of a square 
membrane:

where kn = 2πn/l, km = 2πm/l, and n,m ≥ 1 denote the 
number of antinodes along in-plane coordinates u and v, 
respectively, and |β| < 1 quantifies the degree of hybridi-
zation between degenerate mode pairs. We find that the 
measured maximum RMS displacements, as calibrated 
by the CT, are in good agreement with the expected ther-
mal motion (Fig. 3). Here, we have assumed a mass 
meff = ρl2h/4 ∼ 34 ng, given the thickness h = 50 nm 
and density ρ = 2.7 g/cm3 of the membrane. Note that the 
modes (n,m) = (1, 2) and (2, 1) show hybridization with 
|β| ∼ 0.2.

Scanning laser interferometry is particularly useful to 
characterize complex mode structures, such as SiN mem-
branes patterned with phononic crystal structures [4] 
(Fig. 4). A scan measured on a grid of 100× 100 points 
with a 5µm spacing resolves also the 9.3µm-wide teth-
ers in between two holes, as Fig. 4b shows. At the expense 
of measurement time, the grid spacing could be further 
reduced; however, the spatial resolution of the obtained 
image is eventually limited to the ∼ 2µm diameter of 
the laser spot. Figure 4c shows another mode of the same 
device imaged over a larger area. At a distance of 500µm 
from the center, the mode’s amplitude has decayed to the 
measurement noise level, illustrating the localization of the 
mode to the defect.

An advantage of measuring thermally excited modes 
is that information on all modes within the detector band-
width is acquired simultaneously. This large set of data 
can be processed and represented in different ways. As an 
example, Fig. 4c shows an average spectrum of 400 meas-
urement points on the defect. It clearly reveals a phononic 
bandgap between about 1.41 and 1.68MHz, containing 
five defect mode peaks, as well as the calibration peak at 
1.52MHz. The left panel shows a displacement map cor-
responding to a specific frequency bin of this spectrum. 
We can also create an animation that composes the dis-
placement maps for each of the frequency bins in the spec-
trum. It is provided as electronic supplementary material 
to this article (see supplementary material). It delivers an 
instructive illustration of the effect of the phononic crystal 
structure, contrasting the small number of localized modes 
inside the bandgap with a “forest” of distributed modes at 
frequencies outside the bandgap.

A disadvantage of the scanning laser interferometer is 
its long measurement time. For instance, a high-resolution 
scan, such as the one shown in Fig. 4b, takes more than 8 
hours. This is because for each pixel of the image we probe 
thermal motion during several seconds, averaging over 

(5)wn,m ∝ sin (knu) sin (kmv)+ β sin (kmu) sin (knv),

(a) (f)

(g)

(h)

(i)

(j)

(b)

(c)

(d)

(e)

Fig. 3  Nanomechanical modes of a stoichiometric SiN membrane 
measured with the raster-scan interferometer. a–e Measurements of 
thermal motion on a 22×22 point grid. f–j Calculated displacement 
for mode numbers (n, m), accounting for hybridization between mode 
(1, 2) and (2, 1)
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timescales longer than Γ −1
m . Some acceleration is possible 

by either artificially increasing Γm, e.g., by controlled gas 
damping, or by driving the modes coherently using PZT1. 
The latter can furthermore provide information about the 
mechanical phase at each position, if mechanical frequency 
drifts are properly accounted for.

3.2  Dark‑field imaging

A powerful approach to single-shot characterization of 
mechanical modes is provided by dark-field imaging [35]. 
Figure 5a shows the setup which we have implemented to 
this end. It directly captures the squared displacement pat-
terns of two-dimensional resonators such as membranes 
or cantilevers on a CCD camera. Its functional principle 
is described with simple Fourier optics [38]. A collimated 

laser beam with a wavelength � = 1064 nm and beam 
diameter of 2.4mm impinges perpendicularly on the sam-
ple, here a SiN membrane with side length l = 1mm . The 
reflected electric field Er at transverse position (u, v) is 
subject to a phase shift proportional to the membrane dis-
placement w(u, v, t). We assume that the incident electric 
field E0e

iωt is constant across the membrane, since the inci-
dent beam diameter is 2.4 times larger than the membrane. 
Assuming furthermore w(u, v, t) ≪ �, the reflected electric 
field reads Er(u, v, t) ≈ rE0e

iωt[1+ ikw(u, v, t)], where r is 
the absolute value of the reflection coefficient, k = 2π/� 
and ω = ck. A lens (focal length f1 = 75mm) performs an 
optical Fourier transform F  with respect to the coordinates 
(u, v), yielding

The zero-order peak (first term in Eq. (6)) is removed from 
the beam by an opaque disk in the Fourier plane. This 
extracts the diffracted light due to the membrane displace-
ment w. A second, subsequent lens (focal length f2 = 50 
mm) performs another Fourier transform on the filtered 
light. The time-averaged intensity pattern

is then recorded by a camera, where I0 = |E0e
iωt |2 is the 

incident intensity. It directly shows an intensity pattern pro-
portional to the squared displacement of an eigenmode.

In our setup, a third lens with focal length f3 = 35mm is 
placed in front of the camera to magnify the image. It also 
allows imaging the Fourier plane by adjusting the distance 
between camera and lens to f3. Figure 5b shows a Fourier 
image of the membrane with diffraction patterns extending 
in two orthogonal directions due to the sharp edges of the 

(6)F(Er) = rE0e
iωt[F(1)+ F(ikw(u, v, t))].

(7)
I(u′, v′) =

〈

∣

∣

∣
rE0e

iωt
F(F(ikw(u, v, t)))

∣

∣

∣

2
〉

= I0r
2k2

〈

w(−u,−v, t)2
〉

,

(a) (b) (c)

Fig. 4  Measurements of patterned SiN membrane with the raster-
scan interferometer. a Micrograph of a SiN membrane patterned 
with a phononic crystal structure. b Localized nanomechanical mode 
imaged on 100×100 grid in the scan area indicated by a green square 
in (a). Holes are detected by disappearance of the calibration peak 

and shown as white pixels. c Snapshot of an animation provided as 
supplementary material. It shows the displacement pattern (left) cor-
responding to a particular frequency bin (green line) of the averaged 
spectrum (right) (from [4])

(a)

(b)

(c)

Fig. 5  Setup for dark-field imaging of mechanical motion. a Optical 
configuration with small opaque disk in the Fourier plane A, creating 
a dark-field image of the sample in the image plane B. A lens ( f3) pro-
jects a magnified image onto a CCD camera. A ray diagram illustrates 
how the image is formed (purple lines). b Image of the Fourier plane, 
where an opaque disk blanks out undiffracted zero-order light, when 
a membrane mode is excited. c Sample is mounted on a piezoelectric 
actuator (PZT1) in a high vacuum chamber
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membrane. Two bright spots close to the center originate 
from diffraction due to a driven eigenmode, a hybridiza-
tion between the modes (1,2) and (2,1) at a frequency of 
645 kHz. The opaque disk made of aluminum deposited on 
a thin piece of glass is seen as a white disk in the center. 
With a diameter d = 100µm, it blocks diffraction angles 
α � d/2f1 generated by mechanical modes with a distance 
between nodes of � �/2α ≈ 800µm.

A piezoelectric actuator (PZT1) successively excites the 
eigenmodes of the SiN membrane inside a vacuum cham-
ber, by slowly sweeping a strong drive tone across the fre-
quency window of interest (here 0.4 . . . 2MHz). Figure 6 
shows images of several modes recorded with an incident 
optical power of ∼ 100µW and a typical integration time 
of 10ms. Comparison with mode patterns calculated from 
Eq. (5) allows inferring the mode numbers (n, m), and the 
degree of hybridization, as seen, for example, on the 1.683-
MHz mode.

While it enables much shorter measurement times than 
the scanning laser interferometer, the dark-field imaging 
setup has a relatively low displacement sensitivity. For 
this reason, PZT1 has to be driven with a stroke of � 300 
pm, significantly increasing the membrane oscillation 
amplitude, up to a regime where mechanical nonlineari-
ties (e.g., Duffing-type frequency shifts) can play a role. 
In principle, the sensitivity can be enhanced by increasing 
the laser intensity I0, yet in practice it is often limited by 
background noise due to scattered light from optical com-
ponents increasing equally with I0. Another important limi-
tation is that diffraction from the sample’s geometry cannot 
be discriminated from modal displacements. In this simple 
implementation, the approach is thus unsuitable for devices 
with fine structures in their geometry, such as the patterned 
membranes.

4  Conclusion

In summary, we have described several laser-based tech-
niques to measure and image nanomechanical motion. As 
we show, exquisite displacement sensitivity can be reached, 
well into the regime in which quantum backaction and the 
ensuing light-motion quantum correlations dominate over 
thermomechanical noise. This sensitivity is rivaled only by 
techniques based on superconducting microwave electro-
mechanical systems, which operate at ultra-low (T ≪ 1K ) 
cryogenic temperatures [39, 40]. Interest in this quantum 
domain has originally been motivated by observatories 
such as LIGO and can now, for the first time, be explored 
with optical and microwave experiments [3, 9, 15, 41, 42]. 
In addition, laser-based techniques can provide spatial 
imaging of mechanical displacement patterns. They consti-
tute not only highly useful tools to develop and characterize 

novel micro- and nanomechanical devices [4, 6, 35–37]. 
Similar techniques could also be used to address individual 
elements in multimode devices [20] or (opto-)mechanical 
arrays [4, 43]—if need be, also in combination with cavity-
enhanced readout [33, 44].
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