245 research outputs found

    Quad Zygomatic Implants for Rehabilitation of Atrophic Maxilla: A Case Report and Review

    Get PDF
    Patients with moderate to severe atrophic maxilla challenge the surgeon to discover alternative ways to use existing bone or resort to augmenting the patient with autogenous or alloplastic bone materials. Many procedures have been suggested for these atrophied maxillae before implant placement, which include Le Fort I maxillary downfracture, onlay bone grafts and maxillary sinus graft procedures. A zygomatic implant can be an effective device for rehabilitation of the severely resorbed maxilla. If zygomatic implants are used, onlay bone grafting or sinus augmentation will not be necessary. The purpose of this paper is to review the indications of zygomatic implants placement techniques, stabilization, and prosthodontic procedures

    Exploiting FPGA-aware merging of custom instructions for runtime reconfiguration

    Get PDF
    Runtime reconfiguration is a promising solution for reducing hardware cost in embedded systems, without compromising on performance. We present a framework that aims to increase the performance benefits of reconfigurable processors that support full or partial runtime reconfiguration. The proposed framework achieves this by: (1) providing a means for choosing suitable custom instruction selection heuristics, (2) leveraging FPGA-aware merging of custom instructions to maximize the reconfigurable logic block utilization in each configuration, and (3) incorporating a hierarchical loop partitioning strategy to reduce runtime reconfiguration overhead. We show that the performance gain can be improved by employing suitable custom instruction selection heuristics that, in turn, depend on the reconfigurable resource constraints and the merging factor (extent to which the selected custom instructions can be merged). The hierarchical loop partitioning strategy leads to an average performance gain of over 31% and 46% for full and partial runtime reconfiguration, respectively. Performance gain can be further increased to over 52% and 70% for full and partial runtime reconfiguration, respectively, by exploiting FPGA-aware merging of custom instructions.</jats:p

    Continuous rainfall simulation: 1. A regionalized subdaily disaggregation approach

    Get PDF
    This paper is the first of two in the current issue that presents a framework for generating continuous (uninterrupted) rainfall sequences at both gaged and ungaged point locations. The ultimate objective is to present a methodology for stochastically generating continuous subdaily rainfall sequences at any location such that the statistics at a range of aggregation scales are preserved. This first paper presents a regionalized nonparametric daily disaggregation model in which, conditional on a daily rainfall amount and previous and next-day wetness states at the location of interest, subdaily fragments are resampled using continuous records at nearby locations. The second paper then focuses on a regionalized daily rainfall generation model.To enable the substitution of subdaily rainfall at nearby locations for subdaily rainfall at the location of interest, it is necessary to identify locations with ‘‘similar’’ daily to subdaily scaling characteristics. We use a two-sample, two-dimensional Kolmogorov-Smirnov (K-S) test to identify whether the daily to subdaily scaling relationships are statistically similar between all possible station pairs sampled from 232 gages located throughout Australia. This step is followed by a logistic regression to determine the influence of the covariates of latitude, longitude, elevation, and distance to the coast on the probability that the scaling at any two locations will be similar. The model is tested at five locations, where recorded subdaily data was available for comparison, and results indicate good model performance, particularly in preserving the probability distribution of extremes and the antecedent rainfall prior to the storm event.Seth Westra, Rajeshwar Mehrotra, Ashish Sharma and Ratnasingham Srikantha

    Selecting profitable custom instructions for area-time-efficient realization on reconfigurable architectures

    Get PDF

    Role of Serum Biomarkers in Early Detection of Non-Alcoholic Steatohepatitis and Fibrosis in West Virginian Children

    Get PDF
    Background: Obesity, an epidemic among West Virginia children, as well as insulin resistance (IR), is wellestablished contributors to nonalcoholic steatohepatitis (NASH). Progression of NASH can lead to hepatic fibrosis and cirrhosis, making early detection imperative. The standard for diagnosing NASH is histologically via liver biopsy, which is highly invasive and generally contraindicated in children. By studying serum biomarkers associated with NASH, we aim to identify high risk children who can benefit from a less invasive, alternative approach to the early detection of NASH. Methods: Seventy one children were prospectively recruited and divided into 3 groups: normal weight without IR (control), obese without IR, and obese with IR. Serum samples were drawn for each patient and biomarker levels were assessed via ELISA kits. Results:Obese without IR and obese with IR patients had significantly elevated levels of lipid metabolism and accumulation markers (FGF-21, NEFA, FATP5, ApoB), oxidative stress markers (dysfunctional HDL, 8-Isoprostane), inflammatory markers(dysfunctional HDL, CK-18) and apoptosis markers (CK-18) compared to control patients (p\u3c0.02). Conclusion: This study showed a correlation between obesity, IR, and biomarkers associated with NASH in pediatrics patients from West Virginia, with obese with IR patients showing the strongest correlation. These findings support the clinical application of these serum biomarkers as a less invasive method for early detection of NASH and hepatic fibrosis

    Intra-alveolar neutrophil-derived microvesicles are associated with disease severity in COPD

    Get PDF
    Despite advances in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD), there is a distinct lack of biochemical markers to aid clinical management. Microvesicles (MVs) have been implicated in the pathophysiology of inflammatory diseases including COPD but their association to COPD disease severity remains unknown. We analysed different MV populations in plasma and bronchoalveolar lavage fluid (BALF) taken from sixty-two patients with mild to very severe COPD (51% male; mean age: 65.9 years). These patients underwent comprehensive clinical evaluation (symptom scores, lung function, exercise testing) and the capacity of MVs to be clinical markers of disease severity was assessed. We successfully identified various MV subtype populations within BALF (leukocyte, PMN (polymorphonuclear leukocyte i.e. neutrophil), monocyte, epithelial and platelet MVs) and plasma (leukocyte, PMN, monocyte and endothelial MVs), and compared each MV population to disease severity. BALF neutrophil MVs were the only population to significantly correlate with the clinical evaluation scores including FEV1, mMRC dyspnoea score, 6-minute walk test, hyperinflation and gas transfer. BALF neutrophil MVs, but not neutrophil cell numbers, also strongly correlated with BODE index. We have undertaken, for the first time, a comprehensive evaluation of MV profiles within BALF/plasma of COPD patients. We demonstrate that BALF levels of neutrophil-derived MVs are unique in correlating with a number of key functional and clinically-relevant disease severity indices. Our results show the potential of BALF neutrophil MVs for a COPD biomarker that tightly links a key pathophysiological mechanism of COPD (intra-alveolar neutrophil activation) with clinical severity/outcome

    pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57BI6 and ApoE Knockout Mice Fed a Western Diet

    Get PDF
    We have previously reported that the alpha1 subunit of sodium potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a western diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity, but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. And furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype

    Bronchial Thermoplasty Induced Airway Smooth Muscle Reduction and Clinical Response in Severe Asthma:The TASMA Randomized Trial

    Get PDF
    RATIONALE: Bronchial Thermoplasty (BT) is a bronchoscopic treatment for severe asthma targeting airway smooth muscle (ASM). Observational studies have shown ASM mass reduction after BT but appropriate control groups are lacking. Furthermore, as treatment response is variable, identifying optimal candidates for BT treatment is important. AIMS: First, to assess the effect of BT on ASM mass and second, to identify patient characteristics that correlate with BT-response. METHODS: Severe asthma patients (n=40) were randomized to immediate (n=20) or delayed (n=20) BT-treatment. Prior to randomization, clinical, functional, blood and airway biopsy data were collected. In the delayed control group, re-assessment, including biopsies, was performed after 6 months of standard clinical care, followed by BT. In both groups, post-BT data including biopsies were obtained after 6 months. ASM mass (% positive desmin or α-smooth muscle actin area in the total biopsy) was calculated with automated digital analyses software. Associations between baseline characteristics and Asthma Control and Asthma Quality of Life Questionnaire (ACQ/AQLQ) improvement were explored. RESULTS: Median ASM mass decreased by >50% in the immediate BT group (n=17) versus no change in the delayed control group (n=19) (p=0.0004). In the immediate group ACQ scores improved with -0.79 (-1.61;0.02 IQR) compared to 0.09 (-0.25;1.17 IQR) in the delayed group (p=0.006). AQLQ scores improved with 0.83 (-0.15;1.69 IQR) versus -0.02 (-0.77;0.75 IQR) (p=0.04). Treatment response in the total group (n=35) was positively associated with serum IgE and eosinophils, but not with baseline ASM mass. CONCLUSION: ASM mass significantly decreases after BT when compared to a randomized non-BT treated control group. Treatment response was associated with serum IgE and eosinophil levels but not with ASM mass. Clinical trial registration available at www.clinicaltrials.gov, ID:NCT0222539
    • …
    corecore