

Citation for published version:
Lam, SK, Srikanthan, T & Clarke, CT 2009, 'Selecting profitable custom instructions for area-time-efficient
realization on reconfigurable architectures', IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp.
3998-4005. https://doi.org/10.1109/tie.2009.2017091

DOI:
10.1109/tie.2009.2017091

Publication date:
2009

Link to publication

Copyright © 2009 IEEE.

Reprinted from IEEE Transactions on Industrial Electronics.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the
University of Bath’s products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/tie.2009.2017091
https://researchportal.bath.ac.uk/en/publications/selecting-profitable-custom-instructions-for-areatimeefficient-realization-on-reconfigurable-architectures(cfd3d943-0a7d-41df-9907-649e2ab0833c).html

Lam, S. K., Srikanthan, T., Clarke, C. T., 2009. Selecting Profitable
Custom Instructions for Area-Time-Efficient Realization on
Reconfigurable Architectures. IEEE Transactions on Industrial
Electronics, 56 (10), pp. 3998-4005.

Official URL: http://dx.doi.org/10.1109/tie.2009.2017091

Copyright © 2009 IEEE.

Reprinted from IEEE Transactions on Industrial Electronics.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Bath’s products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

http://dx.doi.org/10.1109/tie.2009.2017091

3998 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 10, OCTOBER 2009

Selecting Profitable Custom Instructions for
Area–Time-Efficient Realization on

Reconfigurable Architectures
Siew-Kei Lam, Member, IEEE, Thambipillai Srikanthan, Senior Member, IEEE, and Christopher T. Clarke

Abstract—Profitable custom instructions provide higher perfor-
mance for a given reconfigurable area. Hence, choosing profitable
custom instructions that are also area–time efficient is essential if
design constraints must be met by field-programmable-gate-array
(FPGA)-based reconfigurable processors. In this paper, we pro-
pose a framework for FPGA-based reconfigurable processors in
order to rapidly identify a reduced set of profitable custom in-
structions without the need for actual hardware synthesis. The
proposed framework is capable of estimating the area utiliza-
tion and latencies of custom instructions on lookup-table-based
commercial FPGAs. Simulations based on 15 applications from
benchmark suites show that the proposed method provides, on
average, an area reduction of over 29% for loss of mere 1.3%
in compute performance. Our evaluations also confirm that the
proposed framework is superior to an existing area-optimization
approach that relies on exploiting the regularity of custom instruc-
tion data paths. In particular, an average area–time product gain
of over 59% was achieved by deploying a reduced set of custom
instructions obtained using the proposed framework.

Index Terms—Custom instruction selection, embedded systems,
high-level estimation, reconfigurable hardware.

I. INTRODUCTION

A S THE nonrecurring engineering costs of application-
specific integrated circuits continue to outweigh the per

unit cost of field-programmable gate arrays (FPGAs) for high-
volume applications, FPGAs have progressively dominated the
integrated-circuit market [1]. FPGA technology can now be
found in a multitude of application domains that are subjected
to tight market and technological constraints [2]. This includes
applications for industrial electrical control systems which
have increasing level of performance expectations coupled with
stringent hardware-cost constraints [3].

It has been projected that by 2010, more than 40% of all
FPGA designs will contain a microprocessor [4]. Platforms,
which consist of a microprocessor core that is coupled with
a reconfigurable functional unit (RFU), are defined as recon-
figurable processors. These reconfigurable processors offer the
possibility of extending the basic instruction set of the micro-

Manuscript received October 27, 2008; revised December 30, 2008. First
published March 16, 2009; current version published September 16, 2009.

S.-K. Lam and T. Srikanthan are with the Centre for High Performance
Embedded Systems, Nanyang Technological University, Singapore 637553
(e-mail: assklam@ntu.edu.sg; astsrikan@ntu.edu.sg).

C. T. Clarke is with the Department of Electronic and Electrical Engineering,
University of Bath, BA2 7AY Bath, U.K. (e-mail: c.t.clarke@bath.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2009.2017091

processor by introducing custom functional units on the RFU.
Commercially available reconfigurable processors include the
Altera Nios II [5], Xilinx MicroBlaze [6], and Stretch [7]
processors. As opposed to loosely coupled schemes where
data are communicated between the microprocessor and RFU
through a shared memory, the tightly coupled scheme employs
internal register files for data transfer. Hence, the communica-
tion overhead does not pose a major bottleneck to the system
performance in tightly coupled schemes [8] and is often ignored
during performance evaluation.

Due to its promising ability to overcome technological and
market challenges, reconfigurable processors will play an im-
portant role in future embedded system-on-a-chip platforms. In
order to cater to the demands for cost efficiency, reconfigurable
processors in the near future are likely to offer a larger range
of programmable logic capacity to suit various applications
or application domains. The cost of reconfigurable-processor-
based solutions will be dominated by the hardware cost (as
opposed to design costs) due to the flexibility of the system.
The market tendency for product differentiation will place a
greater importance on lowering the hardware cost for FPGA-
based systems. Given a reconfigurable processor with a fixed
RFU logic capacity, a set of custom instructions that can lead to
area–time-efficient realizations must be determined rapidly in
order to meet the tight time-to-market (TTM) pressures.

This paper is an extension of the work presented in [9], which
rapidly estimates the area–time measures of custom instructions
on FPGA to facilitate the selection of a reduced set of custom
instructions that can lead to good area–time solutions. In this
paper, we have further reinforced the benefits of the framework
by employing a larger application set in the experiments. In
particular, we have used fifteen applications from widely used
MiBench [10] and MediaBench [11] benchmark suites. In
addition, while the area costs presented in [9] are based on es-
timated values, we provide actual implementation results of the
selected custom instructions in this paper. This eliminates any
ambiguity in the results that may arise due to estimation errors.
Based on the application sets considered, we confirm that the
proposed approach can achieve significant area–time gain over
the existing high-level area-optimization strategy presented in
[12]. Finally, in this paper, we also compare the proposed
approach with the case where the area-optimization strategy
operates on the same reduced set of custom instructions. This
study was not reported in [9]. Contrary to expectations, the
experimental results show that the proposed approach (which
does not incorporate advanced area-optimization techniques)
can still lead to significant area–time gains.

0278-0046/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

LAM et al.: SELECTING PROFITABLE CUSTOM INSTRUCTIONS FOR AREA–TIME-EFFICIENT REALIZATION 3999

The remainder of this paper is organized as follows. In the
following section, we discuss existing approaches for custom
instruction selection and a commonly used strategy for high-
level area optimization. Section II provides an overview of the
proposed framework, and Section III discusses the essential
steps in the framework. Experimental results are provided in
Section IV to demonstrate the benefits of the proposed tech-
nique for selecting area–time-efficient custom instructions. This
paper concludes in Section V.

A. Related Work

Instruction set customization is defined as a process to
automatically generate custom instructions from an applica-
tion in order to meet certain design objectives. An existing
work in instruction set customization generally consists of
two steps: 1) custom instruction identification and 2) custom
instruction selection. Custom instruction identification can be
loosely described as a process of detecting a subgraph from
the application data-flow graph (DFG) to form a single cus-
tom instruction in order to maximize some metric (typically
performance). This step generates a set of custom instruction
candidates or templates, which will be evaluated for custom
instruction implementation. Custom instruction selection evalu-
ates the templates in terms of their performance, area, or power
and selects a subset of them that meets the design constraints.
In this paper, we focus on custom instruction selection.

Heuristics are often used for custom instruction selection
due to the complexity of the problem. In [13], a covering
algorithm was presented to select a minimal set of templates
(custom instruction candidates) that maximizes the number of
covered nodes. The authors analyzed the tradeoff between the
number of templates and the percentage of node coverage. It
was observed that increasing the number of templates in the
covering algorithm will lead to a notable increase in the number
of covered nodes only up to a certain point. This implies that
selecting a larger number of custom instruction candidates may
not necessarily lead to a better performance gain. Although this
is an interesting observation, the work in [13], however, has
not studied the effect on the hardware area–time when varying
number of templates is selected.

Rapid design exploration must be undertaken to facilitate
effective custom instruction selection without delaying the
short TTM requirements for embedded systems. This can be
achieved with the presence of a fast and accurate method
to estimate the performance-cost mapping of custom instruc-
tions on hardware. Previously reported design flows for in-
struction set customization do not incorporate an effective
technique for area–time estimation that takes into account the
architectural constraints of commercial FPGAs. For example,
the estimation process in [14]–[16] is achieved by summing
up the area–time values of the custom instruction operations
that are obtained from standard-cell libraries. The work in
[17] uses a similar strategy to approximate the throughput
of each instruction on FPGA. These strategies do not lend
themselves well toward FPGA estimations as they do not take
into consideration FPGA optimization strategies that maximize
the resource utilization of the programmable logic structures.
Approaches presented in [18] and [19] incorporate a hardware
synthesis flow to select custom instructions of a given appli-

cation in hardware, which hampers the efficiency of design
exploration.

High-level area–time estimation is an essential step to fa-
cilitate rapid design exploration for FPGA implementations.
High-level estimation is directly performed on the behavioral/
algorithmic representations of an application. It is worth men-
tioning that high-level estimation techniques differ from exist-
ing technology mapping approaches (see, e.g., [20]) as the latter
relies on the availability of gate-level representations of the
applications. For example, the high-level estimation technique
presented in [21] is based on a set of formulas that models
the components and corresponding FPGA hardware area of the
DFG operations. The approach reported credible results with a
maximum error of 10%, and the estimation can be achieved on
the order of milliseconds.

Area minimization can be performed at various levels of de-
sign abstractions. In contrast to gate-level synthesis which oper-
ates on the available logic gates of a target architecture library,
high-level synthesis operates on the primitive operations that
are derived from the behavioral/algorithmic representations.
Designs at the higher level of abstractions are less confined
to the physical architecture, and hence, optimizations at this
level usually lead to high-quality results. Existing high-level
area-minimization approaches often aim to maximize resource
sharing of the data paths. Resource-sharing-based strategies
combine highly regular custom instruction data paths into a
single merged data path that can implement the original data
paths in a time-multiplexed manner. The work in [12] finds a
maximal unique set of data-path structures that can cover all
the selected custom instructions. This is achieved by combining
the larger custom instruction subgraphs with smaller subgraphs
that are subsumed by it. Similar concepts have been employed
in [14] to maximize the area utilization of custom instructions.

B. Main Contribution

In this paper, we present a framework that enables rapid
selection of custom instructions for reconfigurable processors
in an architecture-aware manner. A clustering strategy is used
to estimate the FPGA area–time implementation of custom in-
structions from the intermediate representation (IR) of ANSI C
applications, without the need for lengthy hardware synthesis.
The proposed clustering strategy maps the custom instructions
onto the RFU to maximize the utilization of the reconfigurable
resources. The proposed high-level estimation strategy targets
reconfigurable structures that are similar to commercially avail-
able technologies (i.e., Xilinx devices) and hence can be readily
integrated with existing hardware synthesis tools. This enables
rapid selection of a reduced set of custom instructions that
leads to high area efficiency without compromising heavily on
the performance gain. Based on the application set considered,
we show that the proposed approach can achieve significant
area–time gain over an existing high-level area-optimization
strategy [12].

II. OVERVIEW OF PROPOSED FRAMEWORK

Fig. 1 shows an overview of the proposed framework. We
have relied upon the Trimaran compiler infrastructure [22] to
generate the IR of the applications in the form of DFGs.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

4000 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 10, OCTOBER 2009

Fig. 1. Overview of the proposed framework.

In the custom instruction identification stage, a template
enumeration method is combined with graph isomorphism
to identify unique template instances from the Trimaran IR.
These template instances form a set of potential custom in-
struction candidates to be mapped on the RFU and must sat-
isfy a set of architectural constraints. Details of the custom
instruction identification stage can be found in [12] and will not
be elaborated here. Note that custom instruction identification
and application profiling are performed only once for each
application. The template instances are stored in the pattern
library. The custom instruction selection stage iteratively se-
lects custom instructions from the template instances based
on a heuristic that aims to maximize the gain of the custom
instructions.

III. CUSTOM INSTRUCTION SELECTION

We will briefly describe the following three main steps in
the custom instruction selection stage: 1) template matching;
2) template selection; and 3) hardware estimation.

A. Template Matching

A heuristic is used to first identify a set of template instances
for template matching, which account for the performance gain
and area utilization of the custom instruction in hardware. Each
template instance t is assigned a gain as shown in (1), where
the speedup obtained by mapping t on hardware is calculated
as shown in (2). TSW(t) denotes the number of clock cycles
taken for the template t to run on a processor. THW(t) denotes
the number of clock cycles of t in hardware, and we estimate
this by the length of the critical path in the custom instruction

subgraph. Template size(t) denotes the size of the template t
and is estimated by the number of primitive operations of t

Gain(t) =
Speedup(t)

Template size(t)
(1)

Speedup(t) =
TSW(t)
THW(t)

. (2)

The template instances are then sorted in decreasing gain,
and varying range of template instances (each range includes
instances with highest gain) is iteratively selected for template
matching. The template matching problem can be described
as follows: Given an application DFG that is represented as a
directed labeled graph Gd(V,E) and a set of template instances,
where each template instance is a directed graph Ti(V,E), find
every subgraph of Gd that is isomorphic to Ti. This problem
is essentially equivalent to the subgraph isomorphism problem.
We have used the vflib graph-matching library [23] to identify
all the matches in the DFG for the template instances.

B. Template Selection

We have adopted the technique presented in [24] for template
selection, which is based on the conflict graph approach. A
conflict graph is an undirected graph Gu = (V,E), where each
vertex v ∈ V is a match that is a member of the template
set associated with Ti for 1 ≤ i ≤ n and n is the number of
template instances with the highest gain as described in (1). We
denote the template set associated with Ti as Si. An edge e ∈ E
between two matches vx and vy signifies that the matches have
one or more nodes in common.

The algorithm first constructs a conflict graph from the
template matches and then iteratively computes the maximum
independent set (MIS) of each template set to select the custom
instructions. The MIS of template set Si, denoted as MISi, is
defined as the largest subset of vertices in Si that are mutually
nonadjacent. The adjacent matches of the MIS within each
template set are temporarily removed.

An objective function computed in each iteration that gives
preference to the selection of larger matches is employed. The
algorithm proceeds to select MISi with the largest objective
function, and the matches corresponding to the selected MIS
are chosen as custom instructions. These matches and their
adjacent neighbors are then permanently removed from the
conflict graph. The rest of the matches are restored, and the
algorithm repeats until the conflict graph is empty.

C. Reduced Template Selection Process

In this section, we describe how the proposed framework
in Fig. 1 can be used for selecting a reduced set of custom
instructions with the help of an example.

Fig. 2(a) shows a DFG and the corresponding template
instances (P1, P2, . . . , P6) that have been identified in the
custom instruction identification stage. Note that only integer
operations are considered in template instances. Other archi-
tectural constraints that are imposed on the template instances
are reported in [12]. For simplicity, we have only shown six
enumerated template instances in this example. The template
instances are stored in the pattern library [Fig. 2(b)], and
their frequency of occurrences based on an input data set is

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

LAM et al.: SELECTING PROFITABLE CUSTOM INSTRUCTIONS FOR AREA–TIME-EFFICIENT REALIZATION 4001

Fig. 2. Example of reduced template selection process.

obtained from application profiling. As shown in Fig. 2, custom
instruction identification and application profiling are computed
only once for each application. The template instances in the
pattern library are then sorted in decreasing gain as described
in Section III-A, and varying range of template instances (each
range includes the instances with highest gain) is iteratively se-
lected and stored in the template library for template matching
and template selection. In the iteration example in Fig. 2(c),
five templates (T1, T2, . . . , T5) that correspond to instances
(P1, P2, . . . , P6) are selected for template matching. Fig. 2(d)
shows an example of a conflict graph, where the template
instances P4 and P6 are selected as custom instructions.

In the first iteration, the full range of template instances is
used in template matching and selection, and the performance
of the selection is evaluated using the estimated hardware
measures. The range of template instances used in template
matching and selection is progressively reduced in subsequent
iterations. This is repeated until the estimated performance of
the selected custom instructions is notably lesser than the previ-
ous iteration. When this occurs, the selected custom instructions
in the previous iteration will be implemented onto the RFU
using commercially available FPGA implementation tools (i.e.,
Xilinx ISE [25]).

D. Hardware Estimation

This step estimates the area costs and critical path delays of
the selected custom instructions when they are realized with
the logic elements of the RFU. In this paper, we target program-
mable logic elements similar to those found in the Xilinx Virtex
device [26]. The proposed estimation technique partitions the
custom instructions into a set of clusters such that the clusters
can be efficiently mapped onto the lookup table (LUT) and
carry-look-ahead structure of the FPGA logic elements. The
area and critical path delays can then be estimated in terms
of the number of clusters, which corresponds to the number
of FPGA logic elements. Unlike previously reported hard-

ware estimation technique, the proposed technique incorporates
strategies to maximize the resource utilization of the FPGA.
The details of the hardware estimation process can be found
in [27]. It is noteworthy that the hardware area–time results
using the proposed estimation technique have been shown to
be within 8% of those obtained using hardware synthesis. In
addition, the hardware estimation process can be achieved on
the order of milliseconds.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results for fifteen
applications from the MiBench and MediaBench benchmark
suites to demonstrate the area–time benefits of the proposed
approach over other commonly used techniques. In particular,
we compare the area–time results of the proposed technique,
which selects a reduced set of custom instructions [denoted as
RT (Reduced Templates without Data-path Merging)], with the
following approaches.

1) AT (All Templates Without Data-Path Merging): Custom
instruction selection based on the full range of template
instances without data-path merging.

2) AMT (All Templates With Data-Path Merging): Custom
instructions selected from the full range of template in-
stances are subjected to the area-optimization strategy
in [12], which merges custom instructions in order to
maximize resource sharing.

3) RMT (Reduced Templates With Data-Path Merging): Se-
lected custom instructions using the proposed approach
RT are further subjected to the area-optimization method
in [12].

The performance estimation of custom instructions obtained
using these approaches is reported in terms of software clock-
cycle savings (SCS) for application A, which is computed as
shown in (3), where ti’s for i = 1 to n represent the n custom
instructions selected for the application A, TSW(ti) denotes the
number of operations in custom instructions ti (we assume that
each operation takes one software clock cycle), F (ti) is the
execution frequency of the custom instruction ti in application
A, and THW(ti) is the critical path of ti in hardware (in terms of
the number of clusters). We assume that the execution time of
a cluster is equivalent to one software clock cycle. This enables
the reconfigurable processor to run using a global clock where
multicycle custom instruction implementation [5] is allowed

SCS(A) =
n∑

i=1

{F (ti) · (TSW(ti) − THW(ti))} . (3)

The custom instructions obtained with the approaches RT,
AT, AMT, and RMT have been designed in VHDL, imple-
mented using Xilinx ISE (version 9.1.01i) [25], and targeted
to the Virtex-4 FPGA device [26], which incorporate logic
elements with four-input LUTs. The smallest device (i.e.,
xc4vlx40ff1148-10) for the Virtex-4 family that can support
the number of required I/O pins has been chosen as the target
device in the experiments.

The area–time product is obtained by multiplying the clock-
cycle savings with the inverse of the area (in terms of the
number of slices).

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

4002 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 10, OCTOBER 2009

TABLE I
PERFORMANCE COMPARISON BETWEEN AMT, AT, RMT, AND RT

TABLE II
AREA COMPARISON BETWEEN AMT, AT, RMT, AND RT

A. Area–Time Comparison of AMT With AT

Tables I and II show the performance and area of custom in-
structions obtained using the AMT and AT approaches. For the
AMT approach, area optimization is performed on the selected
custom instructions after template matching and selection. It
can be observed in column 6 of Table I that custom instructions
that have undergone area optimization (i.e., AMT) can suffer
from notable performance degradation in a majority of the
applications. In particular, the AT approach has an average of
1.9× speedup over the AMT approach. The reason for this is
that area optimization introduces multiplexers in the merged
custom instruction data paths (see [12]), which leads to an
increase in the critical path delay of the custom instructions
[i.e., THW(ti) in (3)].

As shown in column 6 of Table II, the area-optimization
approach AMT exhibits higher area efficiency than AT for
a number of applications (maximum area reduction of over

20% can be achieved). However, the average area reduction
achieved by AMT is only about 6.9%. Interestingly, in cer-
tain applications (e.g., Sha), the AT approach has slightly
better area efficiency than the AMT approach. This can be
explained by the fact that the area-optimization strategy in
[12] inherently introduces multiplexers in the data paths to
facilitate resource sharing. These multiplexers will contribute
to additional area requirements for realizing the custom in-
structions on FPGA. Hence, an effective area reduction can
only be achieved if area savings due to resource sharing
outweigh the cost that is introduced to facilitate resource
sharing.

Fig. 3 compares the area–time product between the various
techniques. It can be observed that AT outperforms AMT in
terms of area–time product for most of the cases considered.
In particular, AT achieves an average area–time product gain of
about 73% over AMT.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

LAM et al.: SELECTING PROFITABLE CUSTOM INSTRUCTIONS FOR AREA–TIME-EFFICIENT REALIZATION 4003

Fig. 3. Area–time product comparison between AMT, AT, RMT, and RT.

Fig. 4. Performance comparison with existing area-optimization method.

Fig. 4 compares the average performance of custom instruc-
tions (for the 15 applications) that have not undergone data-
path merging (indicated as nonmerged templates or non-MT)
with the average performance of custom instructions that have
undergone data-path merging (indicated as merged templates
or MT). The experiment reports the average performance for
varying number of templates used (from 10% to 100%) during
custom instruction selection.

It can be observed that the average performance of non-MT
tends to increase (in a nonmonotonic fashion) with increasing
number of templates used for custom instruction selection.
It is interesting to note that the opposite applies for MT. In
particular, the average performance of MT decreases (in a non-
monotonic fashion) when more templates are used for custom
instruction selection. The increase in the critical path delay
due to the introduction of multiplexers in MT becomes more
prominent when more template instances are used for custom
instruction selection as there are more opportunities to merge
the custom instruction data paths for area minimization. Hence,
the effective clock-cycle savings of MT decrease with the
increase in the number of templates used for custom instruction
selection.

B. Selecting Reduced Set of Profitable Custom Instructions

Fig. 5 shows the estimated performance for the 15 appli-
cations using the proposed method (RT). It is evident that
increasing the number of templates for custom instruction
selection will not lead to any notable gain after a certain point
(marked as RT in the plots) for almost all the applications

(except for CRC32 and Pegwit). These observations imply that
it is possible to reduce the number of custom instructions for
mapping onto the RFU without compromising heavily on the
performance gain.

C. Area–Time Comparison of RMT With RT

In the following experiments, we will investigate whether the
proposed method can still lead to higher gains when compared
to the case where the same reduced set of templates is subjected
to area optimization. We denote the latter approach as RMT,
where the selected custom instructions of RT are further sub-
jected to area optimization using the method discussed in [12].
In both cases, the number of template instances used for custom
instruction selection is shown in Fig. 5 (i.e., 40% for Adpcm
Dec, 70% for Adpcm Enc, 70% for AES, etc.).

Table I shows the performance of the custom instructions
obtained using RMT and the proposed RT approach. It can be
observed in column 7 of Table I that even though both methods
are based on the same set of custom instructions, the proposed
method RT can still achieve significant performance gain over
RMT for certain applications. In particular, the speedups that
are achieved by RT over RMT are about 2, 2, 1.6, 3.4, and 6
times for Adpcm Enc, Aes, Blowfish Dec, Cjpeg, and Pegwit,
respectively. The average performance gain of RT over RMT is
over 67%. The reason for the performance degradation in RMT
is due to the increase in critical path delay as a result of the
area-optimization technique which introduces multiplexers in
the custom instruction data paths.

While it is expected that the RMT approach will lead to more
area efficiency than RT, it is interesting to note from column 7
of Table II that the average area reduction of RMT is only about
3.9%. The reason for this is twofold. First, since only a reduced
set of custom instructions is subjected to area optimization,
there are less opportunities to merge custom instructions in
order to reduce the area utilization. Hence, it can be observed
that in most of the applications considered, the areas of RMT
and RT are comparable. Second, the area-optimization strategy
in [12] inherently introduces multiplexers in the data paths to
facilitate resource sharing. These multiplexers will contribute
to additional area requirements for realizing the custom instruc-
tions on FPGA.

Next, we compare the area–time product between RMT and
RT. It can be observed from Fig. 3 that RMT has a higher
area–time product than RT in only one application (i.e., Bit-
count). On the other hand, RT exhibits significant area–time
gains over RMT in a number of applications (e.g., Adpcm
Enc, Aes, Blowfish Dec, Cjpeg, and Pegwit). In particular,
the average area–time product gain of RT over RMT is over
59%. This set of results demonstrates that the proposed method
can still achieve significant area–time gains over the existing
area-optimization approach for the same reduced set of custom
instructions.

D. Area–Time Comparison of AT With RT

In the previous experiments, we have established that ex-
isting area-optimization approaches that commonly rely on
data-path merging methods may not lead to area–time-efficient
realizations. In particular, we have shown that AT outperforms

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

4004 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 10, OCTOBER 2009

Fig. 5. Performance estimation with varying number of templates.

Fig. 6. Performance gain over base processor.

AMT in terms of area–time product by as much as 73%.
In addition, we have shown that the proposed method (RT)
has an area–time product gain over RMT, which employs the
same reduced set of custom instructions, of over 59%. In this
section, we will compare the area–time results of the proposed
technique (RT) with AT.

Tables I and II show the performance and area of the
custom instructions obtained using the AT and the proposed
RT approach. The number of template instances used in each
application for RT is shown in Fig. 5. It can be observed from
column 8 of Table I that the average performance loss of RT
is only less than 1.3% compared to AT. When compared to the
case when all template instances are used for custom instruction
selection (i.e., AT), it is evident from column 8 of Table II
that the proposed method (i.e., RT) can lead to significant area
reduction (i.e., average of 29% area reduction). This is due to
the fact that RT leads to the selection of significantly lesser
number of custom instructions in most of the applications when
compared to AT.

Finally, it can be observed from Fig. 3 that when compared
to the case when all template instances are used for custom
instruction selection (AT), the proposed method (RT) has higher
area–time product gain for most of the applications (and com-
parable with the remaining ones). In particular, the average
area–time product gain of the proposed approach is about 2.1
times that of AT.

E. Performance Gain Over Base Processor

Fig. 6 shows the execution time and percentage performance
gain of a custom processor with custom instructions obtained
using the RT approach over the base processor implementation.
We assumed that the base processor is a soft-core processor
with the area-optimized configuration in [28]. The performance
gain is obtained by computing the percentage execution time
savings of the custom processor over the total execution time of
the base processor (calculated based on the profiling results of
[22]). We assumed that each operation in the base processor
utilizes one clock cycle. The execution time savings of the
custom processor are computed using (3), where TSW(ti) and
THW(ti) are substituted with the software latency of the custom
instructions ti and the hardware delay of ti (measured in the
FPGA tool [25]), respectively. It can be observed from Fig. 6
that the custom processor can achieve a notable average gain of
over 16% and a maximum gain of about 30%. It is noteworthy
that this performance gain is achieved in an area-efficient
manner using the proposed strategy.

V. CONCLUSION

A design exploration framework for reconfigurable proces-
sors has been proposed for the rapid selection of a reduced set
of profitable custom instructions. The framework incorporates
a clustering strategy to facilitate rapid area–time estimation of
custom instruction implementations on FPGA. Unlike existing
estimation strategies that do not incorporate architecture-aware
strategies, the proposed estimation method takes into consider-
ation FPGA optimization strategies to maximize the resource
utilization of the programmable logic structures. The proposed
technique leads to rapid selection of custom instructions as it
does not require hardware synthesis. We employed LUT-based
FPGAs such as that found in Xilinx devices only to facilitate
comparisons, and as such, we do not attempt to overcome the
inherent architectural deficiencies. Experimental results show
that the number of candidates for custom instruction selection
can be significantly reduced with marginal degradation in re-
sulting performance gain. Our investigation also reveals that the
proposed method leads to higher area–time gains than that is
possible with existing area-optimization approaches that suffer
from undesirable critical path delay in the resulting data paths

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

LAM et al.: SELECTING PROFITABLE CUSTOM INSTRUCTIONS FOR AREA–TIME-EFFICIENT REALIZATION 4005

due to resource sharing. Finally, the notable savings in area can
be readily traded to increase performance or to reduce power
consumption.

REFERENCES

[1] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An overview of
reconfigurable hardware in embedded systems,” EURASIP J. Embedded
Syst., vol. 2006, no. 1, pp. 1–19, Jan. 2006.

[2] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, design
tools, and application domains of FPGAs,” IEEE Trans. Ind. Electron.,
vol. 54, no. 4, pp. 1810–1823, Aug. 2007.

[3] E. Monmasson and M. N. Cirstea, “FPGA design methodology for in-
dustrial control systems—A review,” IEEE Trans. Ind. Electron., vol. 54,
no. 4, pp. 1824–1842, Aug. 2007.

[4] W. Marx and V. Aggarwal, “FPGAs are everywhere—In design, test
& control,” NI Developer Zone, Jun. 2008. [Online]. Available: http://
zone.ni.com/-devzone/cda/pub/p/id/401

[5] Altera: NIOS II Processors. [Online]. Available: http://www.altera.com/
products/ip/processors/-nios2/ni2-index.html

[6] Xilinx Platform FPGAs. [Online]. Available: http://www.xilinx.com
[7] J. M. Arnold, “S5: The architecture and development flow of a software

configurable processor,” in Proc. IEEE Int. Conf. Field-Programmable
Technol., Dec. 2005, pp. 121–128.

[8] F. Barat, R. Lauwereins, and G. Deconinck, “Reconfigurable instruction
set processors from a hardware/software perspective,” IEEE Trans. Softw.
Eng., vol. 28, no. 9, pp. 847–862, Sep. 2002.

[9] S. K. Lam and T. Srikanthan, “Selection of area-time efficient custom in-
structions for FPGA realization,” in Proc. IEEE Int. Symp. Ind. Electron.,
Jun./Jul. 2008, pp. 1704–1709.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. IEEE Int. Workshop Workload Characteriza-
tion, Dec. 2001, pp. 3–14.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. 13th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 1997, pp. 330–335.

[12] S. K. Lam, T. Srikanthan, and C. T. Clarke, “Rapid generation of cus-
tom instructions using predefined dataflow structures,” Microprocess.
Microsyst.—Special Issue FPGA-Based Reconfigurable Computing,
vol. 30, no. 6, pp. 355–366, Sep. 2006.

[13] R. Kastner, A. Kaplan, S. O. Memik, and E. Bozorgzadeh, “Instruction
generation for hybrid reconfigurable systems,” ACM Trans. Des. Autom.
Embedded Syst., vol. 7, no. 4, pp. 605–627, Oct. 2002.

[14] N. T. Clark, H. Zhong, and S. A. Mahlke, “Automated custom instruc-
tion generation for domain-specific processor acceleration,” IEEE Trans.
Comput., vol. 54, no. 10, pp. 1258–1270, Oct. 2005.

[15] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms
for the extension of embedded processor instruction sets,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 7, pp. 1209–
1229, Jul. 2006.

[16] P. Yu and T. Mitra, “Characterizing embedded applications for instruction-
set extensible processors,” in Proc. 41st IEEE/ACM Des. Autom. Conf.,
Jun. 2004, pp. 723–728.

[17] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific in-
struction generation for configurable processor architectures,” in Proc.
ACM/SIGDA 12th Int. Symp. Field Programmable Gate Arrays,
Feb. 2004, pp. 183–189.

[18] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: A compiler-driven
CPLD-based instruction set accelerator,” in Proc. 7th Annu. IEEE Symp.
Field-Programmable Custom Comput. Mach., Apr. 1999, pp. 92–101.

[19] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Custom-instruction
synthesis for extensible-processor platforms,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 2, pp. 216–228,
Feb. 2004.

[20] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proc. IEEE Int. Conf. Comput.-
Aided Des., Nov. 2004, pp. 752–759.

[21] D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi, “Compile-time
area estimation for LUT-based FPGAs,” ACM Trans. Des. Autom. Elec-
tron. Syst., vol. 11, no. 1, pp. 104–122, Jan. 2006.

[22] Trimaran: An Infrastructure for Research in Instruction-Level Paral-
lelism. [Online]. Available: http://www.trimaran.org

[23] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Performance evalua-
tion of the VF graph matching algorithm,” in Proc. Int. Conf. Image Anal.
Process., Sep. 1999, pp. 1172–1177.

[24] Y. Guo, G. J. M. Smit, H. Broersma, and P. M. Heysters, “A graph
covering algorithm for a coarse grain reconfigurable system,” in Proc.
ACM SIGPLAN Conf. Language, Compiler, Tool Embedded Syst.,
Jun. 2003, pp. 199–208.

[25] Xilinx ISE Foundation. [Online]. Available: http://www.xilinx.com/ise/
logic_design_prod/foundation.htm

[26] Virtex-4 FPGA User Guide, Jun. 17, 2008, San Jose, CA: Xilinx. UG070,
Ver. v2.5.

[27] S. K. Lam and T. Srikanthan, “Estimating area costs of custom instruc-
tions for FPGA-based reconfigurable processors,” in Proc. IEEE Int. Conf.
Appl.-Specific Syst., Architectures Processors, Jul. 2007, pp. 89–94.

[28] D. Mattson and M. Christensson, “Evaluation of synthesizable CPU
cores,” M.S. thesis, Chalmers Univ. Technol., Gothenburg, Sweden, 2004.

Siew-Kei Lam (M’03) received the B.A.Sc. (Hons.)
degree and the M.Eng. degree in computer engineer-
ing from Nanyang Technological University (NTU),
Singapore.

Since 1994, has been with NTU, where he is cur-
rently a Research Associate with the Centre for High
Performance Embedded Systems and has worked
on a number of challenging projects that involved
the porting of complex algorithms in VLSI. He is
also familiar with rapid prototyping and application-
specific integrated-circuit design flow methodolo-

gies. His research interests include embedded system design algorithms
and methodologies, algorithms-to-architectural translations, and high-speed
arithmetic units.

Thambipillai Srikanthan (SM’92) received the
B.Sc. (Hons.) degree in computer and control sys-
tems and the Ph.D. degree in system modeling
and information systems engineering from Coventry
University, Coventry, U.K.

Since 1991, he has been with Nanyang Tech-
nological University, Singapore, where he is cur-
rently a Full Professor, the Director of a 100 strong
Centre for High Performance Embedded Systems
(CHiPES), and the Director of the Intelligent Devices
and Systems cluster. He founded CHiPES in 1998

and elevated it to a university-level research center in February 2000. He has
several years of university experience. His research interests include design
methodologies for complex embedded systems, architectural translations of
compute-intensive algorithms, and computer arithmetic and high-speed tech-
niques for image processing and dynamic routing. He has published more than
250 technical papers, including 60 journals in IEEE TRANSACTIONS, IEE
Proceedings, and other reputed international journals. His services as a Key
Consultant to embedded systems industry, both locally and internationally, are
continually being sought for.

Dr. Srikanthan was the recipient of the Public Administration Medal
(Bronze) at the 2006 National Day in recognition of his contributions to
education in Singapore.

Christopher T. Clarke received the B.Eng. degree
in engineering electronics and the Ph.D. degree in
computer science from the University of Warwick,
Coventry, U.K., in 1989 and 1994, respectively.

From 1994 to 1997, he was a Lecturer with
Nanyang Technological University, Singapore,
where he was the Cofounder of the Centre for High
Performance Embedded Systems. Since then, he
has spent time in industry, both as an in-house
Engineering Manager and independent Consultant
for U.K. silicon design houses, system integrators,

and multinationals such as Philips Semiconductors. Since March 2003, he
has been with the Microelectronics and Optoelectronics Research Group,
Department of Electronic and Electrical Engineering, University of Bath,
Bath, U.K. He has been involved with many European union funded research
projects including PEPS, CIRCE, SENS, and IMANE.

Dr. Clarke is a member of the Centre for Advanced Sensor Technologies.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:52:47 EDT from IEEE Xplore. Restrictions apply.

	cover
	siew-Kei-56-10-2009
	cover
	siew-Kei-56-10-2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

