

Citation for published version:
Prakash, A, Lam, S-K, Clarke, CT & Srikanthan, T 2013, 'FPGA-aware techniques for rapid generation of
profitable custom instructions', Microprocessors and Microsystems, vol. 37, no. 3, pp. 259-269.
https://doi.org/10.1016/j.micpro.2013.02.002

DOI:
10.1016/j.micpro.2013.02.002

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

NOTICE: this is the author’s version of a work that was accepted for publication in Microprocessors and
Microsystems. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version was subsequently
published in Microprocessors and Microsystems, vol 37, issue 3, 2013, DOI 10.1016/j.micpro.2013.02.002

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.micpro.2013.02.002
https://researchportal.bath.ac.uk/en/publications/fpgaaware-techniques-for-rapid-generation-of-profitable-custom-instructions(caac7c3d-f343-4706-9161-aa03cb18bfb9).html

FPGA-Aware Techniques for Rapid Generation of Profitable

Custom Instructions

Alok Prakash1, Siew-Kei Lam1, Christopher T. Clarke2 and Thambipillai Srikanthan1

1School of Computer Engineering

NTU, Singapore, 637553.

{alok0001, assklam, astsrikan}@ntu.edu.sg

2Department of Electronic and Electrical Engineering,

University of Bath, United Kingdom, BA27AY.

eesctc@bath.ac.uk

ABSTRACT

Instruction set extension of FPGA based reconfigurable processors provides an effective means to meet the

increasingly strict design constraints of embedded systems. We have shown in our previous works [20][21] that

the usage of FPGA architectural constraints for pruning the design space during enumeration of custom

instructions/patterns not only leads to notable reduction in the time taken to identify custom instructions but can

also result in the selection of profitable custom instructions when the area is highly constrained. However when

area constraint is relaxed, the previously proposed methods failed to perform better than traditional methods. In

this paper, we propose a heuristic to identify profitable custom instructions for designs with arbitrary area

constraints. The proposed heuristic relies on a new pruning criterion to enumerate patterns with high size-to-

hardware-area ratio. We also proposed a suitable algorithm to select profitable custom instructions from the

enumerated patterns. The proposed template selection algorithm takes advantage of the FPGA area-time

measures of the enumerated patterns, which can be easily inferred from the FPGA-aware enumeration strategy.

Experimental results show that the proposed methods in this paper result in custom instructions that achieve an

average performance gain of 76.23 % over current state-of-the-art approaches.

Keywords

Custom Instruction Extension, Enumeration, Selection, Application-specific architectures.

1. INTRODUCTION

Embedded system designers are consistently facing the ever-increasing time-to-market (TTM) constraints while

being pushed to deliver products with longer life cycle. These contradictory set of constraints has favored FPGA-

based systems which are characterized by high flexibility, low TTM etc. Recently, soft-core processors that can be

synthesized on FPGAs have gained a lot of popularity due to their immense flexibility and performance benefits.

Reconfigurable processors, such as NIOS II[1] from Altera, Microblaze [26] from Xilinx, etc., provide the capability

to extend the instruction set for high performance systems. Although a lot of research has been done in the area

of instruction set extension, commercial FPGA tools still lack a consolidated framework for automatic generation

of custom instructions from a given application code. There are typically two major steps in custom instruction

generation namely, custom instruction (pattern) identification and custom instruction (template) selection. A

commonly adopted approach in pattern identification is pattern enumeration, which tries to identify all the legal

custom instruction patterns within an application. A template selection algorithm is then employed to select a set

of non-overlapping patterns for final implementation based on certain constraints such as area and performance.

While custom instruction generation is a well-researched problem, the existing literature typically ignores the

implementation constraints of the custom instructions on the target FPGA hardware during the process of

identifying and selecting custom instructions. In [20], [21], we showed that neglecting the FPGA architecture

characteristics at the early stages of custom instruction generation leads to solutions that cannot be mapped

efficiently on the FPGA architecture. We also introduced the concept of FPGA-aware enumeration of custom

instruction candidates wherein the pattern enumeration phase uses the target architecture information as

additional pruning constraints. In particular, our enumeration algorithm identified only patterns that can be fully

mapped onto a single logic block of the target FPGA architecture. We define a logic block as a set of 32 FPGA

basic logic elements with the same hardware configuration that implements a 32-bit wide custom instruction. The

method proposed in [20], [21] was devised based on the observation that custom instructions are generally

dominated by small and frequently occurring patterns. Hence, when the available FPGA area is limited, it is

sufficient to identify smaller and frequently occurring patterns that can efficiently utilize the FPGA space as they

provide more performance gain per unit area compared to the larger and less frequently occurring patterns. While

our work in [20], [21] performed exceptionally well in area-constrained designs, they do not scale well when the

area constraint is relaxed. This is due the fact that our previous work focuses on maximizing the resource

utilization of FPGA space with limited resources and this leads to pruning of larger patterns from the design space

that have relatively lower performance gain per unit area. Hence, this strategy may not lead to the best results

when the hardware area constraint is relaxed and the application contains large patterns.

In this paper, we propose a new enumeration strategy to identify profitable custom instructions for FPGAs with

arbitrary area constraints. This is achieved by identifying (enumerating) large patterns that exhibit a high degree

of instruction level parallelism, which can be mapped efficiently onto the FPGA logic blocks. We also propose a

new selection heuristic to facilitate the selection of large custom instructions with low critical path for FPGA

designs with arbitrary area constraint.

It is noteworthy that our previous work in [20], [21] is still relevant for many embedded designs that typically have

very strict area constraints. The work proposed in this paper can be used in a wider range of designs especially

given that FPGAs are becoming commonplace in high performance embedded systems. It should also be noted

that while techniques for Pattern Enumeration have received considerable attention in the past, to the best of our

knowledge, the existing Pattern Enumeration techniques, aside from our own work in [20] and [21], have never

taken the implementation constraints of FPGA architecture into account. The novelty of our work lies in the fact

that we have used these constraints during enumeration so as to make a more informed-enumeration and thereby

achieving much higher performance from the selected custom instructions with less FPGA area utilization. The

experiments undertaken in this work relies on a low-end Xilinx Virtex II FPGA in which the basic logic element is a

4-input LUT. The results obtained for this FPGA showed that high performance custom instructions can still be

realized using a low-end FPGA device when architecture aware methods are employed to generate custom

instructions. We expect to achieve even higher performance on modern FPGAs (with more efficient LUT

architecture) with the proposed methods.

The rest of the paper is organized as follows. Section 2 gives a comprehensive survey of the related work in this

area. In Section 3, we briefly discuss the methods proposed in our previous work [20] and [21] and highlight their

limitation. Section 4 explains the proposed pattern enumeration algorithm while Section 4.2 explains the pattern

selection algorithm. In Section 5, we provide the experimental results to demonstrate the benefits of the proposed

method and Section 6 concludes the paper.

2. RELATED WORK

A typical custom instruction generation methodology follows a two-step process. In the first step called template

identification, valid patterns are identified in an application DFG. A pattern ‘P’ is designated valid if it satisfies

certain constraints related to the structure of the pattern (e.g. convexity), input-output constraints of custom

instructions and operation types.

In the second step, the template selection algorithm selects a small set of non-overlapping patterns for

implementation on the target FPGA device. In the past decade, there has been tremendous amount of research in

custom instruction enumeration and selection methods, making it difficult to list them extensively. In the following

subsections, we will discuss existing state-of-the-art works in the area of pattern identification and pattern

selection. In some of these methodologies, design space exploration is performed after the selection step to

select the right set of custom instructions based on the available area and performance constraint.

2.1 Pattern Identification

A branch and bound algorithm was proposed by Atasu et al. in [3] which identified all the valid patterns from

application Data flow graph (DFG) while discarding those that violated the micro-architectural constraints of the

FPGA. While their algorithm performed significantly better than the contemporary state of the art techniques, its

computation complexity quickly gets out of hand with increasing size of the DFG. Pothineni et al. described a

method to identify maximal convex patterns from a DFG, without any I/O constraints [16]. They claimed that these

patterns, which are not bounded by general I/O constraints, provide up to 50% performance benefits. They also

claimed that such an approach leads to reduction in the enumeration tool runtime.

In [17] the authors provided a new algorithm for faster enumeration of legal patterns. They proposed an iterative

process which reduced their algorithm runtime by up to two orders of magnitude when compared to the existing

work. They enumerated the patterns in increasing order of size, while relating to the patterns with (n+1) nodes to

the patterns with n nodes.

Atasu et. al. in [2] enumerated only maximal convex patterns without considering Input-Output constraints and

achieved a performance increment of an order of magnitude, while having an extremely fast tool runtime. They

defined a maximal convex pattern as a convex subgraph that cannot be grown further by adding more nodes into

it while maintaining its convexity.

In [6] and [12] Chen et al. and Li et al. proposed techniques for fast enumeration of custom instruction candidates,

that are especially well suited for large DFGs. Their algorithm required orders of magnitude less time compared to

state-of-the-art methods. Li et. al. [12] enhanced the work in [6] for the special case of single-output constraint.

Due to its fast runtime, we have extended the algorithm described in [6] and [12] to incorporate additional

hardware cognizant pruning constraints.

2.2 Pattern Selection

After enumerating all the legal patterns from the DFG, pattern selection chooses a set of non-overlapping patterns

for final implementation. This step typically uses graph-covering algorithms to choose a set of non-overlapping

patterns with maximal cover.

There is a lot of research in the area of Pattern Selection [5], [7], [8], [9], [13], [19] etc.. In [9] Cong et al.

presented a complete framework for custom instruction enumeration, selection as well as mapping. The extended

instruction set identified by their algorithms enabled them to achieve up to 3.73x performance gain compared to

the basic instruction set.

Clark et al. presented a complete design framework for automatic generation of patterns within a DFG and a

compiler framework to take advantage of such custom units [7], [8]. The custom instruction candidates were

annotated with their latency and hardware area from a stored hardware library. This information was used in the

selection process which gives preference to the selection of patterns with largest speedup over area ratio. In [13]

the authors used a similar approach, but the area and latency of the patterns were obtained by synthesizing them

on a 0.13µm CMOS process.

Bonzini et al. in [5] proposed a recurrence-aware covering algorithm that achieved tangible improvement over

existing methods. Their work focuses on identifying patterns, which were both large and recurring. This is an

effective approach as it often provides better results than heuristics that either gives more importance to only

frequency or only the pattern size. We have also used a similar heuristic in our pattern selection phase for our

previous work in [20][21]. Yu et al. in [27] have proposed an efficient and scalable method for enumeration of

disjoint pattern from an application DFG.

Guo et al. in [10] proposed a fast and effective method for pattern selection. The authors created a conflict graph,

which is an undirected graph where every node in the graph corresponds to a pattern. An edge in the conflict

graph between two pattern nodes represents an overlap between the corresponding patterns in the original DFG.

The conflict graph enables the selection of non-overlapping patterns for the final implementation. Their selection

strategy relies on choosing the maximal independent set (MIS) in the conflict graph. This strategy is also

employed in our work. Wang et al. in [24] showed that the practical complexity of computing the MIS set for a

given graph is of polynomial order and the complexity is governed by the size of the graph. In the worst-case

scenario, the MIS algorithm is an NP-complete problem.

The work in [19] proposed a custom instruction generation framework. This framework incorporated a hardware

area estimation technique to evaluate the required area to implement a custom instruction by clustering the

pattern candidates. Their approach partitions every pattern into sub-graphs so that each sub-graph could be

completely mapped onto a single logic block of the target FPGA. This approach was used to estimate the

hardware implementation area for the selected patterns. The FPGA logic block is considered as the atomic unit of

area.

Bohm et al. in [4] proposed a methodology for automatic selection of extended instructions in an ASIP. They

proposed a GCC based tool-chain to automatically exploit the extended instructions generated by their custom

instruction generation methodology.

Traditionally memory operations, which are generally excluded from custom instructions and thereby treated as

invalid nodes, act as one of the pruning constraints. A few recent works have proposed to include memory

operations in custom instructions [11], [28] by introducing local memory elements. This allowed enumeration and

selection of larger patterns compared to other approaches thereby resulting in better performance.

Micro-architectural properties of the underlying hardware, e.g. the number of I/O ports available for custom

instruction implementation, are typically used as a fundamental set of constraints during enumeration of custom

instructions. In [20], [21], we proposed a tighter set of constraints for pattern enumeration in order to identify the

most profitable pattern candidates. This led to generation of more profitable custom instructions. However, their

performance was limited to designs with strict area constraint. In this work, we overcome this limitation and

propose strategies to generate profitable custom instructions for any given area constraint.

3. Design with strict area constraints – Our previous work [20, 21].

In this section, we will introduce and discuss our previous work, which targets systems with strict area constraint.

In Section 4, we will show how this was extended to cater to designs with arbitrary area constraints. Figure 1

shows the proposed methodology for instruction set extension and customization. Trimaran [23] is used as the

compiler for the C-application and to generate an Intermediate Representation (IR) for pattern enumeration. The

Trimaran compiler was also used to profile the application in order to identify the most frequently executed basic

blocks. The IR consists of basic operations that can be classified into three main groups: 1) logical operations e.g.

and, or, xor etc., 2) shift operations e.g. shl, shr etc. and 3) arithmetic operations e.g. add, sub, mult, div etc. It

can be observed that the proposed methodology in Figure 1 incorporates the architecture information at the

pattern enumeration as well as selection phase.

3.1 FPGA-Aware Pattern Enumeration

As defined before, the pattern enumeration phase identifies all the legal patterns within a DFG. A pattern is legal if

the micro architecture of the FPGA is capable of efficiently supporting that pattern (e.g. I/O ports, convexity, etc.)

[3, 9]. Theoretically, a DFG with ‘n’ nodes can have up to 2^n number of possible patterns. The enumeration

algorithm uses these micro-architectural constraints to discard illegal patterns. Additionally, a pattern containing

either memory (such as LOAD/STORE) or control flow operations (such as BRANCH) are also termed as illegal.

However, the number of possible legal patterns can still be exponentially large after taking into consideration

these micro-architectural constraints.

Trimaran

Compiler

Pattern

Selection

Pattern

Enumeration

Hardware

Estimation

Rules

A
p

p
lic

a
ti
o

n
 C

F
P

G
A

 L
U

T

S
tr

u
c
tu

re
D

F
G

P
a

tt
e

rn
s

In
v
a

lid

V
a

lid

V
a

lid

 P
a

tt
e

rn
s

W
it
h

 a
n

n
o

ta
te

d

H
W

 A
re

a
-t

im
e

in
fo

rm
a

ti
o

n

Selected Custom

Instructions

Area Information

Figure 1. Our methodology for instruction set extension [20, 21].

In this work we used the pattern enumeration technique proposed in [6], which has been shown to be orders of

magnitude faster than other existing algorithms for large DFGs. Specifically, the enumeration algorithm in [6] has

been modified to take into account the additional pruning constraints so that all enumerated patterns fit exactly

into a single logic block of the target FPGA.

The additional pruning constraints are based on the hardware estimation rule-sets that are proposed in [19]. In

particular, the work in [19] estimates the area-time of custom instructions by partitioning every pattern into smaller

sub-graphs (clusters) so that each cluster could be completely mapped onto exactly one FPGA logic block (i.e. a

set of n logic elements in the FPGA that are similarly configured to create a function that processes n-bit inputs).

This approach enabled rapid estimation of the number of logic blocks as well as the critical path that is required to

implement every pattern in the target FPGA. The authors in [19] used two sets of rules to partition a pattern into

clusters. The first set of rules determine if an operation can be included in a cluster, whereas the second set

evaluates whether the number of inputs and outputs of the cluster conform to the architecture constraints of the

FPGA logic block.

We have incorporated these hardware estimation rule-sets as the pruning constraints alongside the traditional

micro-architectural constraints, so as to identify only “clusters”. Since each “cluster” by definition fits into exactly

one logic block of the target FPGA, we call such custom instructions Fine Grained Custom Instructions (FGCI) in

our work. This ensures that every enumerated pattern can be implemented in a single logic block of the target

FPGA architecture. It should be noted that the proposed enumeration strategy could be used for different FPGA

families, as we would only need to change the hardware estimation rule-sets of [19] to conform to the architecture

constraints of the target FPGA. Since these rule sets can be easily inferred from the target FPGA device’s data

sheet, it is easy to re-target the hardware estimation rule-sets to a different FPGA model or manufacturer. In the

next subsection, we will briefly describe the enumeration algorithm used in [6] and explain the modifications made

in order to incorporate the target architecture information.

3.2. Modifications to the current state-of-art Enumeration Algorithm

The enumeration algorithm proposed by authors in [6, 12] works in a recursive manner to identify valid patterns

(also called "cuts") from an application DFG. The terms used in the algorithm are defined as follows:

 G = Data Flow Graph of a basic block of an application.

 P = Existing Pattern

 u = Selected Node for merging to the existing pattern to form a new pattern.

 P’ = New pattern formed by merging pattern P and the selected node ‘u’ and other nodes to ensure convexity.

 Succ(G, u) = Successor nodes of u in the basic block DFG, G.

 Pred(G, u) = Predecessor nodes of u in the basic block DFG, G.

 Disc(G, u) = Disconnected nodes of u in the basic block DFG, G.

 rg = Redundancy guarding node.

The various terms can be understood by the following example.

Let G(V,E) be a Data-Flow Graph. Node u ∈ V can be classified into the following:

1) Predecessors of node u: Pred(G, u) is set of nodes n ∈ V (n ≠ u), if there is a path in G from n to u.

2) Successors of u: Succ(G, u) = set of nodes n ∈ V (n ≠ u), if there is a path in G from u to n.

3) Disconnected nodes of u: Disc(G, u) = set of nodes n ∈ V, if there is neither a path from u to n nor from n to u}.

A pattern (denoted by P) obtained from an application DFG (denoted by G) is considered to be a valid pattern if it

satisfies the following micro-architectural constraints:

i. P is convex;

ii. Number of Input ports in P ≤ IN_LIMIT;

iii. Number of Output ports in P ≤ OUT_LIMIT;

iv. P does not contain any invalid operations e.g. memory, branch operations.

The terms IN_LIMIT and OUT_LIMIT denote the number of available input and output ports respectively for the

custom instructions in the target architecture. The enumeration algorithm proceeds as follows: The algorithm

starts with an empty pattern P. In addition, a basic block of the application is considered as the initial Data-Flow

Graph, G. It is also necessary to include a "redundancy guarding node" rg in G to avoid enumerating the same

pattern twice in the split function. The algorithm then recursively invokes the enumeration procedure, which

consists of three important functions, select_node, unite and split. The select_node function, as the name

suggests, takes the nodes(G-P) (i.e. the nodes in G that are not a part of the already selected pattern P) and

selects a single node from this set and considers them for inclusion in the pattern. Function unite handles the

positive branch whereby the selected node from the function select_node is used to create a new pattern P' that is

the combination of the new node and P. As a result, the search process is accelerated since the number of nodes

that needs to be clustered in the next iterations of the algorithm is reduced thereby limiting the search time. The

unite function outputs a valid pattern P' in all cases.

The negative branch of this enumeration algorithm is handled by the split function, which caters to the scenario

when the selected node could not be included in the existing pattern to form a valid pattern. In particular, the

function split breaks up the current DFG G into one or two DFGs (e.g. G' and G'') based on the selected node.

Therefore, this step reduces the depth of recursive search. The algorithm repeats by passing the new pattern (i.e.

P') and DFGs (G' and G'') as arguments to the three functions. Further details of this algorithm can be found in [6,

12].

In order to enumerate patterns in an FPGA-aware manner, further constraints are added to the select_node and

unite functions. The modified select_node function utilizes the types of nodes that are already present in the

existing pattern to identify another node that can be merged, while the new unite function checks for additional

constraints while merging the selected node (or the pattern consisting of the selected node) with the existing

pattern. For example, since the Virtex 2 or 4 FPGAs have a single carry chain along with their 4-Input LUT

structure, as shown in Figure 2 [19] [25], they cannot implement more than one ADD/SUB operation in a single

logic block, and therefore a valid pattern can only contain at most one ADD/SUB operation. To ensure this, the

modified select_node function checks the existing pattern for ADD/SUB operations and will not return a new node

which is an ADD/SUB operation, if the existing pattern already has such an operation. Similar changes were

made to check for the other rules as well. The modified select_node function is called mod_select_node algorithm,

the pseudocode and further details of which could be found in [20, 21].

4-LUT

M
U

X
C

Y

Cin
Cout

Output

A xor B

A xor B xor Cin

Sum = A xor B xor Cin

Cout = (A xor B)Cin + (A xor B)A

Figure 2. An Add operation in a 4-Input LUT, present in Xilinx 2 and 4 FPGAs

It is noteworthy that although we discussed the changes made specifically to the enumeration algorithms

proposed in [6, 12], our concepts could be used with any enumeration algorithm. We chose enumeration method

proposed in [6, 12] only because of its fast runtime compared to the rest of the algorithms. Our idea of

enumerating only patterns that can fit into exactly one logic block can be easily implemented in other enumeration

algorithms by incorporating the hardware estimation rule-sets of [19] as pruning constraints.

The strategies in [20, 21] were proposed specifically for tight area designs by enumerating only small and hence

frequently occurring Fine Grained Custom Instructions. Therefore, such patterns are not suited for designs with

large available hardware area. In the next section, we will discuss the strategy proposed in this work, which can

cater to designs with arbitrary area constraint.

4. PROPOSED METHOD FOR DESIGNS WITH ARBITRARY AREA CONSTRAINTS

The method proposed in [20] and [21] can achieve significant performance benefits for designs with stringent

area-constraints. However, it may not lead to the best results for designs with relaxed area constraints. The

reason for such a behavior is explained by the fact that the discovery of large patterns that have a high degree of

instruction level parallelism was intentionally omitted during the enumeration process of [20, 21]. Although these

large patterns generally occur less frequently than the smaller ones, they can still contribute to notable

performance gain, provided there is sufficient FPGA space to implement such large patterns. In this paper, we

denote the method described in Section 3 ([20] & [21]) as the Fine Grained Custom Instructions (FGCI) approach.

The enumeration technique proposed in this paper (denoted as Coarse-Grained Custom Instructions (CGCI)

approach) not only enumerates the smaller patterns as the FGCI approach, but also identifies large profitable

patterns that exhibit a high FPGA performance-area ratio. An example of such a pattern is shown in Figure 3. We

will use this example to highlight the limitation of our previous work. It can be observed that the pattern consists of

four FGCIs in accordance with the concepts explained in [18], [19], [20] and [21]. These four FGCIs are then

implemented as four individual custom instructions, each with a critical path of 1 FGCI. We use the following

equation to calculate the number of clock cycles saved using these extended instructions [19].

Figure 3. An example of a large pattern with relatively small critical path

 [∑() ∑()

] , -

where NN denotes number of nodes (or operations) in a custom instruction, DO is the number of dynamic

occurrences (number of times the custom instruction is called) of the custom instruction during execution, n is the

total number of selected custom instructions and CLP is the critical path of the custom instruction.

Using equation (1) and assuming that the dynamic occurrence of the pattern is 10, the performance achieved is:

[∑() ∑()

] o

However, it can be observed from Figure 3 that three of the FGCIs can be implemented in parallel, and hence the

xorxor andand

addadd

xorxor andand

addadd

xorxor andand

addadd

xorxor andand

addadd

In1 In2 In3 In4 In5 In6 In7 In8 In9

FGCI 3FGCI 2FGCI 1

FGCI 4

C
ri

ti
ca

l
P

at
h

 =
 2

 L
o

g
ic

 B
lo

ck
s

t

t

critical path of the pattern is only 2 logic blocks. If the pattern in Figure 3 can be identified as a single custom

instruction (as opposed to four smaller custom instructions), a higher performance gain can be achieved, i.e. from

(1), the performance will be:

[∑() ∑()

] o

Hence, we can see that while it is prudent to enumerate small and frequently occurring patterns for area

constrained designs, the concept does not hold true when the area constraint is relaxed.

We define Coarse-grained Custom Instruction or CGCI as a combination of FGCI, where more than one of the

constituent FGCIs can be implemented in parallel. This in turn means that the critical path of CGCIs is always

smaller than the number of FGCIs. Since every FGCI can be implemented in 1 logic block, the number of FGCIs

in a CGCI is equivalent to the number of Logic blocks required to implement it.

4.1 Pattern Enumeration for CGCI

We have changed the enumeration algorithm in [6][12] to include patterns that exhibit a high degree of instruction

parallelism and at the same time, can be efficiently mapped onto the FPGA architecture. While this algorithm

looks similar to the one proposed in our previous work, the critical differences are highlighted below. To avoid

confusion and for the sake of clarity, we present and explain the entire algorithm including the ones in [20, 21]. In

particular, apart from enumerating FGCIs, the new algorithm also identifies patterns in which the number of

FGCIs is greater than the critical path of the pattern. These patterns are annotated with the hardware area and

critical path (both in terms of number of FGCIs) during the enumeration phase. Again, it should be noted that the

area of a CGCI (in number of logic blocks) is basically the number of FGCIs in it, whereas its critical path is

obtained by determining the maximum schedule length of the custom instruction, e.g. (2*t) in Figure 3, where “t” is

the latency of a logic block.

Algorithm 1 describes the new enumeration algorithm that incorporates the necessary steps to evaluate the

number of FGCIs and the critical path of every new pattern after merging the selected node with the existing

pattern (along with the other nodes needed to meet the convexity constraint [3]]). The basic enumeration

algorithm used here has been adapted from the work in [6] and [12] and explained previously in Section 3.

Just as we explained in Section 3.1, a new pattern P’ is formed by adding a new node ‘u’ to the existing pattern

P as well as the other nodes needed to ensure the convexity of the generated pattern. The extra nodes needed

for convexity depends upon the set to which the selected node belongs to. For example, if ‘u’ is the element of

Pred(G, P), then all the nodes in the intersection of set Succ(G, u) and the set Pred(G, P) must also be added and

so on. In the current state-of-the-art methods any new pattern formed by this step needs to be verified against the

traditional micro-architectural constraints such as the number of Input/Output nodes etc. However, in our case, it

is also checked against the additional rules (Lines 7 and 10 in Algorithm 1) to ensure the enumeration of only the

most profitable custom instruction candidates. These additional checks rely on two values obtained previously in

Lines 5 and 6 in Algorithm 1, to ensure that only profitable custom instruction candidates that are large and exhibit

high degree of parallelism are enumerated. These two values are:

1) The number of FGCIs in the pattern (Line 5 in Algorithm 1 and Algorithm 1a). In order to obtain this, we first

enumerate all the sub-patterns of a pattern. Each sub-pattern is then evaluated using the cluster_evaluation

algorithm to obtain a set of valid FGCIs. The FGCIs adhere to the rules in cluster_evaluation that was

proposed in [21] (shown here in Algorithm 2), which ensures that a pattern implemented in a single logic block

of the target FPGA is a valid FGCI. We then select a set of non-overlapping FGCIs that “cover” the entire

pattern using the conflict graph and Maximum Independent Set (MIS) methods proposed in [10]. These

concepts have been explained in detail later in Section 4.2 for the selection of Coarse Grained Custom

Instructions (CGCIs). The number of valid FGCIs required to cover the pattern gives the area measure of the

pattern.

2) The critical path of the pattern in terms of number of FGCIs (Line 6 in Algorithm 1). Since we know the

FGCIs covering the pattern P’ from Step “1”, it is easy to calculate the critical path of P’ based on the schedule

time step of FGCIs in pattern P’, based on the level of parallelism present in the pattern P’. As an example,

consider the pattern in Figure 3. The three FGCIs at the first scheduling level can be implemented in parallel and

therefore the time required to execute them is equivalent to the time for a single logic block. The last FGCI in

Figure 3 needs the output of the first three FGCIs and hence it is executed in the second time step. Therefore the

critical path of the entire patter is 2 logic blocks.

In order to verify a pattern for a valid FGCI the cluster_evaluation algorithm basically works by first arranging all

nodes in a given pattern in a topological order and then traversing the pattern in that order, checking for various

rules needed to ensure that all the operations of the pattern can fit into a single logic block. For example, since a

logic block in Virtex 2/4 (even the newer FPGA such as Virtex 5/6/7) has single carry chain, it does not allow

patterns with two arithmetic operations. Similarly, since the last stage of the LUT (Figure 2) is the partial sum (A

xor B xor C), all logical or shift operations must be executed first to generate the required operands (i.e. A and B)

for the add operation. Therefore, the algorithm does not allow a pattern with logical or shift operation after an

arithmetic operation to pass as a valid cluster. The variables such as has_arith_op etc. are used to denote if a

pattern has an arithmetic operation etc. The I/O constraints are also verified to ensure that patterns can indeed be

implemented in a single logic block. Therefore, the algorithm verifies the pattern against the rules needed to

implement a pattern in a single logic block of the target FPGA fabric.

It should be noted again that the approaches proposed in this paper is targeted towards a low end device with

only 4-inputs LUT with a single carry chain such as the ones in Xilinx Virtex 2 or 4. The ideas presented in this

paper can be easily extended to current and future generation of devices such as Xilinx Virtex 5/6/7 that contain

6-input LUTs with similar carry chain connections [29] that can either implement a single 6-input function or dual

5-input functions. The larger LUTs in newer FPGA devices typically enables more functionality in a single Logic

block, which potentially leads to better performance-area ratio. Therefore, in order to target a different FPGA

device, we need to change the number of Input/output ports allowed in a single cluster or FGCI thereby allowing

the concept itself to be applied to any FPGA family across different vendors.

Once the number of FGCIs and the critical path of a pattern are defined, we proceed with the remaining steps in

Algorithm 1. A pattern consisting of a single FGCI, is identified as a valid pattern if it satisfies the I/O constraints

(specific to the target FPGA device). On the other hand, a pattern with multiple FGCIs is chosen if and only if the

number of FGCIs in the pattern is greater than its critical path i.e. patterns similar to the example pattern in Figure

3, discussed before. This strategy leads to the enumeration of the most profitable set of patterns for the given

application on a particular architecture.

It is noteworthy that the proposed enumeration algorithm identifies custom instructions wherein their FPGA area-

time measures can be inferred without the need for time-consuming hardware implementation. The area-time in

our case was calculated using cluster_evaluation function at its core.

In the next subsection, we propose a selection heuristic that favors these large patterns when the FPGA area is

unconstrained, while selection smaller patterns for area-constrained design.

Algorithm 1 Proposed Enumeration Algorithm
 unite_new(P, G, rg, u) {

1

{

{

 * + (() ()) ()

 * + (() ()) ()

 * + ()
 }

2 if((u Disc(G,P))&&(Succ(G,u) Succ(G,P)=={})&&(OUT_LIMIT==1))

3 return;

4 rg=NaN;

5 Count the number of FGCIs in the pattern P' using count_fgci;

6 Evaluate the critical path of the pattern P' using based on scheduling of FGCIs;

7 if ((number of FGCIs(P')==1)&& in_check(P') &&out_check(P')){ //function to check
FGCI node rules and I/O constraints

8 patterns.add(P');

9 enumerate(P', G, rg);

 }

10 elseif (number_of_FGCIs)pattern P'>(critical_path)pattern P'){

11 patterns.add(P');

12 enumerate(P', G, rg);

 }

13else

14 return

Algorithm 1a Count FGCIs
count_fgci (Pattern P){

1 Enumerate every sub-pattern in Pattern P.

2 Evaluate every sub-pattern for valid FGCI using cluster_evaluation.

3 Find the set of FGCIs that complete “ ov r ” th patt rn P u ing onf i t graph and MIS m thod .

4 number_of_FGCI = number of sub-patterns required to cover the pattern P.

6 return number_of_FGCI.

}

Algorithm 2 Cluster Evaluation
cluster_evaluation(pattern){

1 Sort the nodes in the pattern in topological order.

2 bool has_arith_op, has_logical_op, has_shft_op =FALSE;

 //variables has_arith_op, has_logical_op & has_shft_op show

 //whether or not a pattern has arithmetic, logical or shift

 //operations respectively

3 for every node in the pattern{

4 if node == arith_op

5 if has_arith_op==TRUE; //any prior node in the pattern // is an
arithmetic operation

6 return 0; //cluster not possible; cluster cannot contain //two arithmetic
ops.

7 else

8 has_arith_op = TRUE;

9 end if

10 else if node == logical_op

11 if has_arith_op==TRUE; //any prior node in the pattern is
//an arithmetic operation

12 return 0; //cluster not possible; a logical operation // cannot
appear after an arithmetic operation

13 else

14 has_log_op =TRUE;

15 end if

16 else if node == shift_op

17 has_shft_op =TRUE;

18 end if

 }

19 return 1; //pattern is a valid cluster

}

4.2 PATTERN SELECTION FOR CGCI

Using the method proposed in the last section, we get the most profitable set of patterns in a given application.

This set basically comprises of two types of patterns, each of which are specifically useful for different area

constraint scenarios. The smaller patterns known as FGCIs, with critical path of 1 LUT perform very well when the

area is highly constrained. As we showed in [20] and [21], when the area constrained is high, it is sufficient to

identify such small patterns, which usually occur very frequently. On the other hand, the second type of patterns

enumerated using the proposed method are the ones with critical path more than one, but which exhibit high

instruction level parallelism. These patterns known as CGCIs, help us to achieve high performance in designs

with relaxed area constraints.

Although the set of patterns identified contain all the profitable patterns in an application, a suitable pattern

selection algorithm is a must to choose the right set of patterns for different area constraint. We propose a

selection heuristic that promotes small patterns when the area constraint is high, but allows large patterns for

implementation in designs with sufficient FPGA area. In order to achieve this goal, the enumerated patterns were

grouped together using “VFLib” [22] to find isomorphic patterns. A group of isomorphic patterns was then

represented as a corresponding template. Our selection algorithm follows a similar basic step described in [10]

where a conflict graph is used to select a set of non-overlapping patterns. A conflict graph is an undirected graph

where every node in the graph corresponds to a pattern. An edge in the conflict graph between two nodes

represents an overlap between the corresponding patterns in the DFG. Algorithm 3 shows the proposed pattern

selection algorithm. Once the conflict graph is created, we use the steps similar to the one described in [20] and

[21] to compute the local Maximum Independent Set (MIS) to find a set of vertices in every template of the conflict

graph that are mutually non-adjacent. Here we propose a new heuristic defined in equation 2 to compute the local

MIS weight:

 . [
 .

]

 [2]

Algorithm 3 Pattern Selection
1 pattern_selection{
2 remaining_area=area_constraint;
3 Compute local MIS of patterns with area less than the area_constraint;
4 Compute weight of these patterns based on a heuristic (no.of nodes*Number of local MIS)/(Critical Path);
5 Sort all the templates in decreasing order of MIS weight;
6 Find the template with the largest MIS weight;

7 if (Ar a of thi t mp at ≤ remaining_area)

8 Choose this template for implementation;
9 remaining_area=(remaining_area)-(area of selected template);
10 Remove the overlapping patterns from the conflict graph;
11 Restore the patterns temporarily removed previously from the Conflict graph;
12 Recompute the local MIS of the patterns left in the conflict graph and Proceed to Step 4;

13else if (Area of this template > remaining_area)
14 Choose the template with the next largest MIS weight;
15 if (Ar a of thi t mp at ≤ remaining_area)
16 Proceed with Step 8;
17 else
18 if No templates are left then
19 exit;
20 calculate Performance with the selected templates;
21 else
22 Proceed with Step 14;
23 end if
24 end if
25 end if
}

The new heuristic has two important differences from the heuristics used in [5] [10] [19] as well as our previous

work in [20] and [21]. Firstly, we divide the existing heuristic (which favors large and frequently occurring patterns)

by the critical path of the pattern. This enables a selection preference for large patterns with a high degree of

parallelism when the area constraint of the design is relaxed. At the same time, since the critical path of a FGCI,

by our definition is 1, the new heuristic also caters to the selection of smaller and frequently occurring patterns

that can efficiently utilize the FPGA space when the area constraint of the design is tight. The second difference is

the extra power of 3 to the second term in equation 2. This was found empirically to reinforce the selection of

larger patterns with smaller critical path.

After calculating the local Maximum Independent Set, all the templates are sorted according to their MIS weight.

Next, the algorithm starts with the template with the largest MIS weight to ensure constraint-aware pattern

selection. This template is selected if and only if it does not violate the current area constraint. In case the

available area is not sufficient to implement this pattern, it moves on to the template with second largest MIS

weight and continues till it finds a suitable template and chooses it. After selecting a particular template for

implementation, all the patterns in the maximum independent set of the selected template are implemented as

custom instructions while also removed from the conflict graph. We also updated the remaining area constraint

and recalculated the MIS weight for the remaining templates in the conflict graph. The algorithm is reiterated till

either the area constraint is violated or the templates are exhausted in the conflict graph.

5. EXPERIMENTS AND RESULTS

In this section, we compare the results obtained using the proposed FPGA-aware custom instruction generation

approach with our previous work [21] and [20] and the existing state-of-the-art custom instruction generation

approaches from [5][10][19][6]. We denote the existing state-of-the-art approaches as the traditional method. In

traditional method, legal patterns are first enumerated, and this is followed by a pattern selection stage that

attempts to select large and recurring custom instructions. The enumeration algorithm used in the traditional

approach is from [6]. The pattern selection step uses the greedy selection approach described in [5] and [10]. We

have also implemented a design exploration step for the traditional approach that relies on solving the knapsack

problem [9][8] to identify the most profitable set of custom instructions (from the selected patterns) that meet the

given area constraint. It should be noted that all the three different methods produce different sets of custom

instructions based on what is deemed profitable by the corresponding heuristics.

We have observed an average reduction of 5.25% in the number of patterns enumerated using the proposed

approach when compared to the traditional method. The reduction in the number of patterns enumerated by the

proposed method also translates to the reduction in the enumeration runtime, though it is not very significant

since our algorithm has to check for additional constraints during enumeration.

Now we compare the cycle savings achieved by using the proposed CGCI approach as opposed to the traditional

approach, as well as our previously proposed FGCI. The performance achieved by using each of the three

extended instructions was estimated using equation 1, which gives a fairly accurate estimation of the performance

gained by using these extended instructions [19]. As mentioned in Section 4.1, we targeted our design for the

Xilinx Virtex 2 FPGA, but the concepts and algorithms can be easily retargeted to any FPGA family. It should be

noted that even a low end FPGA such as the Virtex 2 FPGA shows the advantage of our methodology to create

designs that are more efficient. Better and newer FPGA families can achieve even better performance. For

example, the newer FPGAs like Xilinx Virtex 5/6/7 or the Altera Stratix IV/V have adaptive-LUT structures with

more number of inputs, I/O etc. and therefore can fit in larger patterns with more I/O, thus providing better

performance per unit area. The frequency of operation of the processor after the addition of the extended

instructions generated by any methodology is likely to fall compared to the base processor, especially in the case

of instructions with larger critical path. Although the results in this work do not consider this effect of reduced

processor frequency, it is still a fair comparison since the frequency would reduce by implementing any large

custom instructions from any enumeration methodology.

It should be noted that the addition of custom instructions using any methodology is normally done under the

presumption that the advantage of adding the custom instructions offsets the penalty paid because of reduced

frequency. Moreover, the larger custom instructions can be implemented as a multi-cycle custom instruction in the

newer FPGAs as part of the processor pipeline, thereby eliminating the penalty. In addition, our method is

particularly efficient in this regard compared to the traditional method, since we ensure the critical path of the

extended instruction is as low as possible.

Figure 4 shows performance achieved in terms of clock cycles saved by using the custom instructions obtained

by the various methods. The cycle counts were calculated using equation 1. Figures 4.1 to 4.6 show three trend

lines, one for each of the three methods, Traditional in green, FGCI in blue and CGCI in red. The X-axis

represents the FPGA area in terms of logic blocks. As defined before, a logic block is a set of 32 FPGA LUT with

the same hardware configuration to implement a 32-bit operation. The number of logic blocks was limited to 15 as

we experimentally found out that

4.1 SHA 4.2 BLOWFISH

4.3 RIJNDAEL 4.4 QSORT

4.5 PATRICIA 4.6 CJPEG

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

0E+0

2E+6

4E+6

6E+6

8E+6

1E+7

1E+7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

0E+0

5E+6

1E+7

2E+7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

0E+0

1E+6

2E+6

3E+6

4E+6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

0E+0

1E+5

2E+5

3E+5

4E+5

5E+5

6E+5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

0E+0

1E+5

2E+5

3E+5

4E+5

5E+5

6E+5

7E+5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
 S

av
in

gs

Area Constraint (# of Logic Blocks)

FGCI CGCI Traditional CI

most of the applications do not exhibit significant performance increment beyond that. This is also evident by the

trend lines that tend to plateau as the area is increased to 15 logic blocks. This in turn means that we never

implement more than 15 custom instructions in any case. It should be remembered that in this work we have

defined a logic block as a set of 32 FPGA basic logic elements with identical hardware configuration that

implements a 32-bit wide custom instruction. Table 2 shows the number of custom instructions implemented by

the various methodologies. The numbers in the bracket show the area in logic blocks of these custom

instructions.

A large number of custom instructions may lead to reduced clock frequency due to delay in the arbitrator logic

between the soft-core processor and custom hardware. However, as shown in Table 2, the maximum number of

custom instructions implemented for an application is only 15. Based on earlier investigation in the influence of

the number of custom instructions to the delay of arbitrator logic that was reported in [30], we find that number of

selected custom instructions in the proposed method will not have any notable impact on the clock frequency. In

addition, we have also not taken into consideration the decrease in clock frequency due to the arbitrator logic in

the conventional method and therefore providing a fair comparison in all cases.

Table.2. Number of Custom Instructions (and their area) implemented using the various methodologies.

Application

Traditional

C.I.(Area) FGCI.(Area) CGCI.(Area)

SHA 13(13) 9(9) 10(12)

BLOWFISH 11(15) 15(15) 11(15)

RIJNDAEL 14(15) 15(15) 14(15)

QSORT 2(3) 2(2) 2(3)

PATRICIA 8(15) 8(8) 8(12)

CJPEG 9(14) 15(15) 10(15)

The sample applications were taken from two widely used Embedded Benchmark suites. They are representative

applications from various domains; SHA, Blowfish, Rijndael are from the Security suite of MiBench[14]; QSORT

from the Automotive; Patricia from Networking; and lastly CJPEG, a multimedia application from the MediaBench

2[15] benchmark suite.

The Y-axis shows the estimated clock cycles saved as calculated by equation 1. It can be observed that the

CGCIs proposed in this work consistently perform better than both the traditional methods. It also overcomes in

limitation of FGCI in applications such as SHA, BLOWFISH and PATRICIA, where the FGCI could not outperform

the traditional method during relaxed area constraints. Evidently, the proposed method performs significantly

better than the traditional method with an average improvement of over 76.23%. In applications such as Rijndael

and Qsort, the CGCI method underperforms slightly when compared to FGCI. This is attributed to the fact that

these applications predominantly consist of smaller and frequently occurring patterns where the FGCI method has

been shown to perform exceptionally well.

Table 3 shows the average performance per unit area (area measured in number of logic blocks) achieved by the

three methods. Like before, the performance is measured in terms of number of cycles saved by using the custom

instructions generated by the various methods. From the figures 4.1 to 4.6, we found the area constraint where

each of the methods provides maximum performance. We then divided this maximum performance with the

corresponding area to get the average performance per unit area. It is evident that the proposed method

outperforms the traditional method in all cases, while also being better when compared to the FGCI approach [20,

21] in almost all cases (and comparable with the remaining ones). This proves that the proposed CGCIs achieve

the best performance per unit area and therefore are the most profitable set of custom instructions.

Table.3. Performance achieved per unit area using the proposed method against the Traditional Method and FGCI.

 Application Traditional C.I. FGCI CGCI

SHA 3167337.6 2824816 3501402

BLOWFISH 581967.13 610934 653067

RIJNDAEL 936244.87 937560 936260

QSORT 1074334.3 1074334 1124335

PATRICIA 37684.81 69088.8 67801

CJPEG 14285.92 31825.9 41725.7

Figure 5 shows the absolute speedup achieved when the proposed CGCIs and the traditional CIs were used as

extended instructions when compared to the base processor implementation. The relatively low speedup in

Rijndael and Cjpeg is attributed to the fact that we have assumed every instruction in the base processor takes

exactly one clock cycle giving the base processor an unrealistic advantage. In reality, we expect the speedup to

be higher. As the objective of this work is to demonstrate that the proposed method can lead to better solutions

than the existing methods, we have refrained from performing detailed cycle level simulations to show a more

realistic speedup over the base processor for the time being.

Figure 5. Average speedup achieved by using the proposed CGCIs against Traditional CIs, as extended instructions in the

Applications

16.78

28.96

5.44
10.33 8.39

1.23

21.5

39.27

9.46

15.15 15.05

3.62

0

10

20

30

40

50 CI %age speedup CGCI %age speedup

6. CONCLUSION

Instruction set extension, while being very useful for high performance embedded systems, needs careful

selection of the extended instructions for achieving high performance per unit area. This work proposes new

enumeration and selection heuristics to identify the most profitable custom instruction candidates for designs with

arbitrary area. The proposed enumeration approach identifies large patterns that have relatively smaller critical

path. Such patterns have been shown to achieve higher performance in designs with relaxed area constraints

when compared to the existing work. The proposed template selection heuristic enables a selection preference

for large patterns with a high degree of parallelism when the area constraint of the design is relaxed. Based on

the results of our experiments on benchmark application from the MiBench and MediaBench Benchmark suites,

we show that the proposed method achieves significant performance improvement of 76.23% on average over

the current state-of-the-art approach. Our simulation results show that the proposed method can achieve a

maximum speedup of 39.27% with an average speedup of 17.34% when compared to the base processor

implementation.

REFERENCES
[1] Altera corp. NIOS II processors.(http://www.altera.com/products/ip/processors/nios2/ni2-index.html).

[2] Atasu, K., Mencer, O., Luk,W., Ozturan, C., Dundar, G. 2008. Fast custom instruction identification by convex subgraph

enumeration. In: Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008. International Conference on. (July

2008) 1–6.

[3] Atasu, K., Pozzi, L., and Ienne, P. 2003.Automatic application- specific instruction-set extensions under microarchitectural

constraints. In DAC ’03: Proceedings of the 40th annual Design Automation Conference, pages 256–261, New York, NY, USA,

2003. ACM.

[4] Bohm A.C. Murray X. Qu M. Zuluaga O. Almer, R.V. Bennett and N.P. Topham.2009. An end-to-end design flow for automated

instruction set extension and complex instruction selection based on gcc. In Proc. 1st International Workshop on GCC Research

Opportunities (GROW'09), 2009.

[5] Bonzini, P., Pozzi, L. 2008. Recurrence-aware instruction set selection for extensible embedded processors. IEEE Trans. Very Large

Scale Integr. Syst. 16(10) (2008) 1259–1267.

[6] Chen, X., Maskell, D.L., Sun, Y. 2007. Fast identification of custom instructions for extensible processors. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on 26(2) (2007) 359–368.

[7] Clark, N., Zhong, H., Mahlke, S. 2003. Processor acceleration through automated instruction set customization. In: MICRO 36:

Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, Washington, DC, USA, IEEE Computer

Society (2003) 129.

[8] Clark, N., Zhong, H., Mahlke, S. 2005. Automated custom instruction generation for domain-specific processor acceleration.

Computers, IEEE Transactions on 54(10) (Oct. 2005) 1258–1270.

[9] Cong, J., Fan, Y., Han, G., Zhang, Z. 2004. Application-specific instruction generation for configurable processor architectures. In:

FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays, New York, NY,

USA, ACM (2004) 183–189.

[10] Guo, Y., Smit, G.J., Broersma, H., Heysters, P.M. 2003. A graph covering algorithm for a coarse grain reconfigurable system. In:

LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded systems, New York,

NY, USA, ACM (2003) 199–208.

[11] Kluter, T., Burri, S., Brisk, P., Charbon, E. and Ienne, P. 2010. Virtual Ways: Efficient Coherence for Architecturally Visible Storage

in Automatic Instruction Set Extensions. High Performance Embedded Architectures and Compilers, Lecture Notes in Computer

Science Y. Patt, P. Foglia, E. Duesterwald et al., eds., pp. 126-140: Springer Berlin / Heidelberg, 2010.

[12] Li, T., Jigang, W., Deng, Y., Srikanthan, T., Lu, X. 2008. Fast identification algorithm for application-specific instruction-set

extensions. In: Electronic Design, 2008. ICED 2008. International Conference on. (Dec. 2008) 1–5

http://www.altera.com/products/ip/processors/nios2/ni2-index.html

[13] Li, T., Jigang, W., Lam, S.K., Srikanthan, T., Lu, X. 2009. Efficient heuristic algorithm for rapid custom-instruction selection. In:

ICIS ’09: Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and Information Science, Washington,

DC, USA, IEEE Computer Society (2009) 266–270.

[14] Mibench version 1.0(http://www.eecs.umich.edu/mibench/).

[15] Mediabench consortium(http://euler.slu.edu/ fritts/mediabench/).

[16] Pothineni, N., Kumar, A. and Paul, K. 2007. Application specific datapath extension with distributed i/o functional units. In VLSI

Design, 2007. Held jointly with 6th International Conference on Embedded Systems., 20th International Conference on, pages 551–

558, Jan. 2007.

[17] Pothineni, N., Kumar, A., Paul, K. 2008. Exhaustive enumeration of legal custom instructions for extensible processors. In: VLSI

Design, 2008. VLSID 2008. 21st International Conference on. (Jan. 2008) 261–266.

[18] Siew-Kei Lam, Wen Li, and T. Srikanthan. High level area estimation of custom instructions for fpga-based reconfigurable

processors. In Information, Communications & Signal Processing, 2007 6th International Conference on, pages 1–5, Dec. 2007..

[19] Lam, S.K., Srikanthan, T.: Rapid design of area-efficient custom instructions for reconfigurable embedded processing. J. Syst. Archit.

55(1) (2009) 1–14.

[20] Prakash, A., Lam, S.K., Singh, A.K. and Srikanthan, T.: Architecture-Aware Custom Instruction Generation for Reconfigurable

Processors. International Symposium on Applied Reconfigurable Computing, Bangkok, Thailand, March 2010, pp. 414-419.

[21] Prakash, A., Lam, S.K., Clarke, C.T. and Srikanthan, T.: Instruction Set Customization For Area-Constrained FPGA Designs.

International SOC Conference, Taipei, Taiwan, September 2011.

[22] The vflib graph matching library, version 2.0 (http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html).

[23] Trimaran compiler (http://trimaran.org/).

[24] Wang, P. and Bohacek, S. 2008. On the practical complexity of solving the maximum weighted independent set problem for optimal

scheduling in wireless networks. In Proceedings of the 4th Annual international Conference on Wireless internet (Maui, Hawaii,

November 17 - 19, 2008). ACM International Conference Proceeding Series. Institute for Computer Sciences Social-Informatics and

Telecommunications Engineering, ICST, Brussels, Belgium, 1-9.

[25] Xilinx Data Sheet, Virtex 2.5V FPGA Detailed Functional Description, DS003-2,Version 2.8.1, December 2002.

[26] Xilinx microblaze(http://www.xilinx.com/tools/microblaze.htm).

[27] Yu, P., Mitra, T. 2007. Disjoint Pattern Enumeration for Custom Instructions Identification. Field Programmable Logic and

Applications, 2007. FPL. International Conference on, pp.273-278, 27-29 Aug. 2007.

[28] Zuluaga, M., Kluter, T., Brisk, P., Topham, N., Ienne, P. 2009. Introducing control-flow inclusion to support pipelining in custom

instruction set extensions. SASP, pp.114-121, 2009 IEEE 7th Symposium on Application Specific Processors, 2009.

[29] Xilinx 7 series Overview, online, (http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf)

[30] Lam, S.K., Shoaib, M., Srikanthan, T.:Modeling Arbitrator Delay-Area Dependencies in Customizable Instruction Set Processors.

IEEE Third International Workshop on Electronic Design, Test and Applications (DELTA), January 2006, pp. 237-242.

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

