610 research outputs found

    Cosmology of the Randall-Sundrum model after dilaton stabilization

    Get PDF
    We provide the first complete analysis of cosmological evolution in the Randall-Sundrum model with stabilized dilaton. We give the exact expansion law for matter densities on the two branes with arbitrary equations of state. The effective four-dimensional theory leads to standard cosmology at low energy. The limit of validity of the low energy theory and possible deviations from the ordinary expansion law in the high energy regime are finally discussed

    Extracorporeal membrane oxygenation as "bridge" to lung transplantation: what remains in order to make it standard of care?

    Get PDF
    Since its introduction into clinical practice, lung transplantation (LTx) is gradually becoming a worldwide standard treatment for patients with a broad spectrum of end-stage respiratory diseases (1\u20133). From 1995 to 2010, more than 30,000 LTx have been performed, and it is worth noting that in recent years the number of LTx has been progressively increasing to more than 3,000/year in 2010, with a post-transplant graft half-life that went from 4.7 in the 1990s to 5.9 in the new millennium (4). However, the crude mortality rate of patients awaiting LTx is higher than mortality for other solid organs. Mortality rate in 2009 for patients on the waiting list for LTx was about 14.1% in North America (www.srtr.org) and 14.7% in Italy (www.airt.it). What are the reasons for these unacceptable mortality rates? First, patients have to wait for the graft longer than patients waiting for other organs because of the small number of lungs suitable for transplantation (5). Second is the lack of supportive therapies that are able to replace respiratory function when the primary pulmonary diseases evolve from \u201crespiratory insufficiency\u201d to \u201crespiratory failure,\u201d characterized by refractory hypoxemia and hypercapnia

    Radiative Inflation and Dark Energy

    Full text link
    We propose a model based on radiative symmetry breaking that combines inflation with Dark Energy and is consistent with the WMAP 7-year regions. The radiative inflationary potential leads to the prediction of a spectral index 0.955 \lesssim n_S \lesssim 0.967 and a tensor to scalar ratio 0.142 \lesssim r \lesssim 0.186, both consistent with current data but testable by the Planck experiment. The radiative symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for Dark Energy. Finally, we present a possible extra dimensional scenario in which our model could be realised.Comment: 15 pages, 4 figures; v2: references added, appendix added, Section 5 slightly modified; content matches published versio

    Biological Responses to Cadmium Stress in Liverwort Conocephalum conicum (Marchantiales)

    Get PDF
    Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution

    Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton

    Full text link
    If the inflaton is a pseudoscalar, then it naturally interacts with gauge fields via an axion-like coupling to FμνF~μνF_{\mu\nu} \tilde{F}^{\mu\nu}. Through this coupling, the rolling inflaton produces quanta of the gauge field, that in their turn source the tensor components of the metric perturbations. Due to the parity-violating nature of the system, the right- and the left-handed tensor modes have different amplitudes. Such an asymmetry manifests itself in the form of non-vanishing TB and EB correlation functions in the Cosmic Microwave Background (CMB). We compute the amplitude of the parity-violating tensor modes and we discuss two scenarios, consistent with the current data, where parity-violating CMB correlation functions will be detectable in future experiments.Comment: 9 pages, 1 figure; v2: a minor numerical mistake corrected, references added; v3: minor changes, matches published versio

    Goldberger-Wise variations: stabilizing brane models with a bulk scalar

    Full text link
    Braneworld scenarios with compact extra-dimensions need the volume of the extra space to be stabilized. Goldberger and Wise have introduced a simple mechanism, based on the presence of a bulk scalar field, able to stabilize the radius of the Randall-Sundrum model. Here, we transpose the same mechanism to generic single-brane and two-brane models, with one extra dimension and arbitrary scalar potentials in the bulk and on the branes. The single-brane construction turns out to be always unstable, independently of the bulk and brane potentials. In the case of two branes, we derive some generic criteria ensuring the stabilization or destabilization of the system.Comment: 8 pages, 2 figures. 1 figure and one subsection added. version published on PR

    Review : Best Practices In Educating Sustainability and Heritage

    Get PDF
    This result has been produced as a part of O1 INTELECTUAL OUTPUT "01: Review of the Best Practices on Educating Sustainability and Heritage" within HERSUS project, Erasmus + Strategic Partnerships for higher education

    Maximal Temperature in Flux Compactifications

    Full text link
    Thermal corrections have an important effect on moduli stabilization leading to the existence of a maximal temperature, beyond which the compact dimensions decompactify. In this note, we discuss generality of our earlier analysis and apply it to the case of flux compactifications. The maximal temperature is again found to be controlled by the supersymmetry breaking scale, T_{crit} \sim \sqrt{m_{3/2} M_P}.Comment: 10 pages, 10 figures. v2:comment and references adde

    Surface Superconductivity in Niobium for Superconducting RF Cavities

    Full text link
    A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02
    corecore