184 research outputs found

    Unusual decoherence in qubit measurements with a Bose-Einstein condensate

    Get PDF
    We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density-matrix. The qubit's evolution exhibits a slow (1/t\propto1/\sqrt{t}) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This stays in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.Comment: 5 pages, additional explanations related to experimental realization are added, typos corrected, Phys. Rev. A, in pres

    A Path Intergal Approach to Current

    Full text link
    Discontinuous initial wave functions or wave functions with discontintuous derivative and with bounded support arise in a natural way in various situations in physics, in particular in measurement theory. The propagation of such initial wave functions is not well described by the Schr\"odinger current which vanishes on the boundary of the support of the wave function. This propagation gives rise to a uni-directional current at the boundary of the support. We use path integrals to define current and uni-directional current and give a direct derivation of the expression for current from the path integral formulation for both diffusion and quantum mechanics. Furthermore, we give an explicit asymptotic expression for the short time propagation of initial wave function with compact support for both the cases of discontinuous derivative and discontinuous wave function. We show that in the former case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt3/2)O(\Delta t^{3/2}) and the initial uni-directional current is O(Δt1/2)O(\Delta t^{1/2}). This recovers the Zeno effect for continuous detection of a particle in a given domain. For the latter case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt1/2)O(\Delta t^{1/2}) and the initial uni-directional current is O(Δt1/2)O(\Delta t^{-1/2}). This is an anti-Zeno effect. However, the probability propagated across a point located at a finite distance from the boundary of the support is O(Δt)O(\Delta t). This gives a decay law.Comment: 17 pages, Late

    Infrared laser pulse triggers increased singlet oxygen production in tumour cells

    Get PDF
    Photodynamic therapy (PDT) is a technique developed to treat the ever-increasing global incidence of cancer. This technique utilises singlet oxygen (1O2) generation via a laser excited photosensitiser (PS) to kill cancer cells. However, prolonged sensitivity to intensive light (6–8 weeks for lung cancer), relatively low tissue penetration by activating light (630 nm up to 4 mm), and the cost of PS administration can limit progressive PDT applications. The development of quantum-dot laser diodes emitting in the highest absorption region (1268 nm) of triplet oxygen (3O2) presents the possibility of inducing apoptosis in tumour cells through direct 3O2 → 1O2 transition. Here we demonstrate that a single laser pulse triggers dose-dependent 1O2 generation in both normal keratinocytes and tumour cells and show that tumour cells yield the highest 1O2 far beyond the initial laser pulse exposure. Our modelling and experimental results support the development of direct infrared (IR) laser-induced tumour treatment as a promising approach in tumour PDT

    Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.Comment: 4 pages, 3 figures, lette

    Reexamination of continuous fuzzy measurement on two-level systems

    Get PDF
    Imposing restrictions on the Feynman paths of the monitored system has in the past been proposed as a universal model-free approach to continuous quantum measurements. Here we revisit this proposition and demonstrate that a Gaussian restriction, resulting in a sequence of many highly inaccurate (weak) von Neumann measurements, is not sufficiently strong to ensure proximity between a readout and the Feynman paths along which the monitored system evolves. Rather, in the continuous limit, the variations of a typical readout become much larger than the separation between the eigenvalues of the measured quantity. Thus, a typical readout is not represented by a nearly constant curve, correlating with one of the eigenvalues of the measured quantity A^\hat{A}, even when decoherence or Zeno effect is achieved for the observed two-level system, and does not point directly to the system's final state. We show that the decoherence in a ``free'' system can be seen as induced by a Gaussian random walk with a drift, eventually directing the system towards one of the eigenstates of A^\hat{A}. A similar mechanism appears to be responsible for the Zeno effect in a driven system, when its Rabi oscillations are quenched by monitoring. Alongside the Gaussian case, which can only be studied numerically, we also consider a fully tractable model with a ``hard wall'' restriction and show the results to be similar.MINECO, Fondo Europeo de Desarrollo Regional FEDER, Grant No. FIS2015-67161-P (MINECO/FEDER) (D.S.), MINECO Grant No. SVP-2014-068451 (S.R.), MINECO Grant No. MTM2013-46553-C3-1-P (E.A.), SGI/IZOSGIker UPV/EHU, i2BASQUE academic network

    Towards novel compact laser sources for non-invasive diagnostics and treatment

    Get PDF
    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation
    corecore