100 research outputs found

    Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES Project by the EU's Horizon 2020 Programme

    Get PDF
    The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015-2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU's Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services

    Understanding earthquake hazards in southern California - the "LARSE" project - working toward a safer future for Los Angeles

    Get PDF
    The Los Angeles region is underlain by a network of active faults, including many that are deep and do not break the Earth’s surface. These hidden faults include the previously unknown one responsible for the devastating January 1994 Northridge earthquake, the costliest quake in U.S. history. So that structures can be built or strengthened to withstand the quakes that are certain in the future, the Los Angeles Region Seismic Experiment (LARSE) is locating hidden earthquake hazards beneath the region to help scientists determine where the strongest shaking will occur

    Epidemiology of severe pediatric adenovirus lower respiratory tract infections in Manitoba, Canada, 1991-2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most pediatric adenovirus respiratory infections are mild and indistinguishable from other viral causes. However, in a few children, the disease can be severe and result in substantial morbidity. We describe the epidemiologic, clinical, radiologic features and outcome of adenovirus lower respiratory tract infections (LRTI) in Aboriginal and Non-Aboriginal children in Manitoba, Canada during the years 1991 and 2005.</p> <p>Methods</p> <p>This was a retrospective study of 193 children who presented to the department of pediatrics at Winnipeg Children's Hospital, Manitoba, Canada with LRTI and had a positive respiratory culture for adenovirus. Patients' demographics, clinical and radiologic features and outcomes were collected. Adenovirus serotype distributions and temporal associations were described. Approximate incidence comparisons (detection rates) of adenovirus LRTI among Aboriginal and Non-Aboriginal children were estimated with 95% confidence intervals.</p> <p>Results</p> <p>Adenovirus infections occurred throughout the year with clusters in the fall and winter. Serotypes 1 to 3 were the predominant isolates (two thirds of the cases). The infection was more frequent among Canadian Aboriginals, as illustrated in 2004, where its incidence in children 0-4 years old was 5.6 fold higher in Aboriginals (13.51 vs. 2.39 per 10,000, <it>p </it>< 0.000). There were no significant differences in length of hospitalization and use of ventilator assistance between the two groups (<it>p </it>> 0.185 and <it>p </it>> 0.624, respectively) nor across serotypes (<it>p </it>> 0.10 and <it>p </it>> 0.05, respectively). The disease primarily affected infants (median age, 9.5 months). Most children presented with bronchiolitis or pneumonia, with multi-lobar consolidations on the chest x-ray. Chronic (residual) changes were documented in 16 patients, with eight patients showing bronchiectasis on the chest computerized tomography scan.</p> <p>Conclusions</p> <p>Adenovirus infection is associated with significant respiratory morbidities, especially in young infants. The infection appears to be more frequent in Aboriginal children. These results justify a careful follow-up for children with adenovirus LRTI.</p

    Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers

    Get PDF
    Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source

    Upper Crustal Structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic Results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    Get PDF
    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ∼4.3 km and >3 km, respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ∼2.4 km. Below depths of ∼2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using densities inferred from the velocity model, indicates that different velocity-density relationships hold for both sedimentary and basement rocks as one crosses the San Andreas Fault. The LARSE II velocity model can now be used to improve the SCEC Community Velocity Model, which is used to calculate seismic amplitudes for large scenario earthquakes

    Obesity in persons with Down syndrome

    No full text
    • …
    corecore