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Abstract
This paper focuses on the sufficient condition of block sparse recovery with the
l2/l1-minimization. We show that if the measurement matrix satisfies the block
restricted isometry property with δ2s|I < 0.6246, then every block s-sparse signal can
be exactly recovered via the l2/l1-minimization approach in the noiseless case and is
stably recovered in the noisy measurement case. The result improves the bound on
the block restricted isometry constant δ2s|I of Lin and Li (Acta Math. Sin. Engl. Ser.
29(7):1401-1412, 2013).
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1 Introduction
Compressed sensing [–] is a scheme which shows that some signals can be recon-
structed from fewer measurements compared to the classical Nyquist-Shannon sampling
method. This effective sampling method has a number of potential applications in signal
processing, as well as other areas of science and technology. Its essential model is

min
x∈RN

‖x‖ s.t. y = Ax, ()

where ‖x‖ denotes the number of non-zero entries of the vector x, an s-sparse vector
x ∈ R

N is defined by ‖x‖ ≤ s � N . However, the l-minimization () is a nonconvex and
NP-hard optimization problem [] and thus is computationally infeasible. To overcome
this problem, one proposed the l-minimization [, –].

min
x∈RN

‖x‖ s.t. y = Ax, ()

where ‖x‖ =
∑N

i= |xi|. Candès [] proved that the solutions to () are equivalent to those
of () provided that the measurement matrices satisfy the restricted isometry property
(RIP) [, ] with some definite restricted isometry constant (RIC) δs ∈ (, ), here δs is
defined as the smallest constant satisfying

( – δs)‖x‖
 ≤ ‖Ax‖

 ≤ ( + δs)‖x‖
 ()

for any s-sparse vectors x ∈R
N .

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208388069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13660-017-1448-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1448-2&domain=pdf
http://orcid.org/0000-0003-4356-3455
mailto:gaoyimh@163.com


Gao and Ma Journal of Inequalities and Applications  (2017) 2017:174 Page 2 of 10

However, the standard compressed sensing only considers the sparsity of the recovered
signal, but it does not take into account any further structure. In many practical applica-
tions, for example, DNA microarrays [], face recognition [], color imaging [], image
annotation [], multi-response linear regression [], etc., the non-zero entries of sparse
signal can be aligned or classified into blocks, which means that they appear in regions
in a regular order instead of arbitrarily spread throughout the vector. These signals are
called the block sparse signals and has attracted considerable interests; see [–] for
more information.

Suppose that x ∈ R
N is split into m blocks, x[], x[], . . . , x[m], which are of length

d, d, . . . , dm, respectively, that is,

x = [x, . . . , xd︸ ︷︷ ︸
x[]

, xd+, . . . , xd+d︸ ︷︷ ︸
x[]

, . . . , xN–dm+, . . . , xN
︸ ︷︷ ︸

x[m]

]T , ()

and N =
∑m

i= di. A vector x ∈ R
N is called block s-sparse over I = {d, d, . . . , dm} if x[i] is

non-zero for at most s indices i []. Obviously, di =  for each i, the block sparsity reduces
to the conventional definition of a sparse vector. Let

‖x‖, =
m∑

i=

I
(∥
∥x[i]

∥
∥



)
,

where I(x) is an indicator function that equals  if x >  and  otherwise. So a block s-
sparse vector x can be defined by ‖x‖, ≤ s, and ‖x‖ =

∑m
i= ‖x[i]‖. Also, let �s denote

the set of all block s-sparse vectors: �s = {x ∈R
N : ‖x‖, ≤ s}.

To recover a block sparse signal, similar to the standard l-minimization, one seeks the
sparsest block sparse vector via the following l/l-minimization [, , ]:

min
x∈RN

‖x‖, s.t. y = Ax. ()

But the l/l-minimization problem is also NP-hard. It is natural to use the l/l-
minimization to replace the l/l-minimization [, , , ].

min
x∈RN

‖x‖, s.t. y = Ax, ()

where

‖x‖, =
m∑

i=

∥
∥x[i]

∥
∥

. ()

To characterize the performance of this method, Eldar and Mishali [] proposed the block
restricted isometry property (block RIP).

Definition  (Block RIP) Given a matrix A ∈ R
n×N , for every block s-sparse x ∈ R

N over
I = {d, d, . . . , dm}, there exists a positive constant  < δs|I < , such that

( – δs|I)‖x‖
 ≤ ‖Ax‖

 ≤ ( + δs|I)‖x‖
, ()
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then the matrix A satisfies the s-order block RIP over I , and the smallest constant δs|I
satisfying the above inequality () is called the block RIC of A.

Obviously, the block RIP is an extension of the standard RIP, but it is a less stringent
requirement comparing to the standard RIP [, ]. Eldar et al. [] proved that the l/l-
minimization can exactly recover any block s-sparse signal when the measurement matri-
ces A satisfy the block RIP with δs|I < .. The block RIC can be improved, for exam-
ple, Lin and Li [] improved the bound to δs|I < ., and established another sufficient
condition δs|I < . for exact recovery. So far, to the best of our knowledge, there is no
paper that further focuses on improvement of the block RIC. As mentioned in [, , ],
like RIC, there are several benefits for improving the bound on δs|I . First, it allows more
measurement matrices to be used in compressed sensing. Secondly, for the same matrix
A, it allows for recovering a block sparse signal with more non-zero entries. Furthermore,
it gives better error estimation in a general problem to recover noisy compressible signals.
Therefore, this paper addresses improvement of the block RIC, we consider the following
minimization for the inaccurate measurement, y = Ax + e with ‖e‖ ≤ ε:

min
x∈RN

‖x‖, s.t. ‖y – Ax‖ ≤ ε. ()

Our main result is stated in the following theorem.

Theorem  Suppose that the s block RIC of the matrix A ∈R
n×N satisfies

δs|I <
√


≈ .. ()

If x∗ is a solution to (), then there exist positive constants C, D and C, D, and we have

∥
∥x – x∗∥∥

, ≤ Cσs(x), + D
√

sε, ()

∥
∥x – x∗∥∥

 ≤ C√
s
σs(x), + Dε, ()

where the constants C, D and C, D depend only on δs|I , written as

C =
(

√
 – δ

s|I + δs|I )


√

 – δ
s|I – δs|I

, ()

D =


√
 + δs|I


√

 – δ
s|I – δs|I

, ()

C =
(

√
 – δ

s|I + δs|I )

(
√

 – δ
s|I – δs|I)(

√
 – δ

s|I – δs|I)
, ()

D =

√

 + δs|I (
√

 – δ
s|I + δs|I)

(
√

 – δ
s|I – δs|I)(

√
 – δ

s|I – δs|I)
, ()
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and σs(x), denotes the best block s-term approximation error of x ∈R
N in l/l norm, i.e.,

σs(x), := inf
z∈�s

‖x – z‖,. ()

Corollary  Under the same assumptions as in Theorem , suppose that e =  and x is
block s-sparse, then x can be exactly recovered via the l/l-minimization ().

The remainder of the paper is organized as follows. In Section , we introduce the l,

robust block NSP that can characterize the stability and robustness of the l-minimization
with noisy measurement (). In Section , we show that the condition () can conclude the
l, robust block NSP, which means to implement the proof of our main result. Section 
is for our conclusions. The last section is an appendix including an important lemma.

2 Block null space property
Although null space property (NSP) is a very important concept in approximation the-
ory [, ], it provides a necessary and sufficient condition of the existence and unique-
ness of the solution to the l-minimization (), so NSP has drawn extensive attention for
studying the characterization of measurement matrix in compressed sensing []. It is
natural to extend the classic NSP to the block sparse case. For this purpose, we introduce
some notations. Suppose that x ∈ R

N is an m-block signal, whose structure is like (),
we set S ⊂ {, , . . . , m} and by SC we mean the complement of the set S with respect to
{, , . . . , m}, i.e., SC = {, , . . . , m} \ S. Let xS denote the vector equal to x on a block index
set S and zero elsewhere, then x = xS + xSC . Here, to investigate the solution to the model
(), we introduce the l, robust block NSP, for more information on other forms of block
NSP, we refer the reader to [, ].

Definition  (l, robust block NSP) Given a matrix A ∈R
n×N , for any set S ⊂ {, , . . . , m}

with card(S) ≤ s and for all v ∈ R
N , if there exist constants  < τ <  and γ > , such that

‖vS‖ ≤ τ√
s
‖vSC ‖, + γ ‖Av‖, ()

then the matrix A is said to satisfy the l, robust block NSP of order s with τ and γ .

Our main result relies heavily on this definition. A natural question is what relationship
between this robust block NSP and the block RIP. Indeed, from the next section, we shall
see that the block RIP with condition () can lead to the l, robust block NSP, that is,
the l, robust block NSP is weaker than the block RIP to some extent. The spirit of this
definition is first to imply the following theorem.

Theorem  For any set S ⊂ {, , . . . , m} with card(S) ≤ s, the matrix A ∈ R
n×N satisfies

the l, robust block NSP of order s with constants  < τ <  and γ > , then, for all vectors
x, z ∈R

N ,

‖x – z‖, ≤  + τ

 – τ

(‖z‖, – ‖x‖, + ‖xSC ‖,
)

+
γ

√
s

 – τ

∥
∥A(x – z)

∥
∥

. ()
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Proof For x, z ∈R
N , setting v = x – z, we have

‖vSC ‖, ≤ ‖xSC ‖, + ‖zSC ‖,,

‖x‖, = ‖xSC ‖, + ‖xS‖, ≤ ‖xSC ‖, + ‖vS‖, + ‖zS‖,,

which yield

‖vSC ‖, ≤ ‖xSC ‖, + ‖z‖, – ‖x‖, + ‖vS‖,. ()

Clearly, for an m-block vector x ∈R
N is like (), l-norm ‖x‖ can be rewritten as

‖x‖ = ‖x‖, =
m∑

i=

(∥
∥x[i]

∥
∥



)/. ()

Thus, we have ‖vS‖, = ‖vS‖ and ‖vS‖, ≤ √
s‖vS‖,. So the l, robust block NSP implies

‖vS‖, ≤ τ‖vSC ‖, + γ
√

s‖Av‖. ()

Combining () with (), we can get

‖vSC ‖, ≤ 
 – τ

(
‖xSC ‖, + ‖z‖, – ‖x‖,

)
+

γ
√

s
 – τ

‖Av‖.

Using () once again, we derive

‖v‖, = ‖vSC ‖, + ‖vS‖, ≤ ( + τ )‖vSC ‖, + γ
√

s‖Av‖

≤  + τ

 – τ

(
‖xSC ‖, + ‖z‖, – ‖x‖,

)
+

γ
√

s
 – τ

‖Av‖,

which is the desired inequality. �

The l, robust block NSP is vital to characterize the stability and robustness of the l/l-
minimization with noisy measurement (), which is the following result.

Theorem  Suppose that the matrix A ∈ R
n×N satisfies the l, robust block NSP of order

s with constants  < τ <  and γ > , if x∗ is a solution to the l/l-minimization with y =
Ax + e and ‖e‖ ≤ ε, then there exist positive constants C, D and C, D, and we have

∥
∥x – x∗∥∥

, ≤ Cσs(x), + D
√

sε, ()

∥
∥x – x∗∥∥

 ≤ C√
s
σs(x), + Dε, ()

where

C =
( + τ )

 – τ
; D =

γ

 – τ
. ()

C =
( + τ )

 – τ
; D =

γ ( + τ )
 – τ

. ()
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Proof In Theorem , by S denote an index set of s largest l-norm terms out of m blocks
in x, () is a direct corollary of Theorem  if we notice that ‖xSC ‖, = σs(x), and
‖A(x – x∗)‖ ≤ ε. Equation () is a result of Theorem  for q =  in []. �

3 Proof of the main result
From Theorem , we see that the inequalities () and () are the same as in () and ()
up to constants, respectively. This means that we shall only show that the condition ()
implies the l, robust block NSP for implementing the proof of our main result.

Theorem  Suppose that the s block RIC of the matrix A ∈ R
n×N obeys (), then the

matrix A satisfies the l, robust block NSP of order s with constants  < τ <  and γ > ,
where

τ =
δs|I


√

 – δ
s|I – δs|I

, γ =

√

 + δs|I


√

 – δ
s|I – δs|I

. ()

Proof The proof relies on a technique introduced in []. Suppose that the matrix A has
the block RIP with δs|I . Let v be divided into m blocks whose structure is like (). Let
S =: S be an index set of s largest l-norm terms out of m blocks in v. We begin by dividing
SC into subsets of size s, S is the first s largest l-norm terms in SC , S is the next s largest
l-norm terms in SC , etc. Since the vector vS is block s-sparse, according to the block RIP,
for |t| ≤ δs|I , we can write

‖AvS‖
 = ( + t)‖vS‖

. ()

We are going to establish that, for any j ≥ ,

∣
∣〈AvS, AvSj〉

∣
∣ ≤

√
δ

s|I – t‖vS‖‖vSj‖. ()

To do so, we normalize the vectors vS and vSj by setting u =: vS/‖vS‖ and w =: vSj /‖vSj‖.
Then, for α,β > , we write

〈Au, Aw〉 =


α + β

[∥
∥A(αu + w)

∥
∥

 –
∥
∥A(βu – w)

∥
∥

 –
(
α – β)‖Au‖


]
. ()

By the block RIP, on the one hand, we have

〈Au, Aw〉 ≤ 
α + β

[
( + δs|I)‖αu + w‖

 – ( – δs|I)‖βu – w‖

]

–


α + β

(
α – β)( + t)‖u‖



=


α + β

[
α(δs|I – t) + β(δs|I + t) + δs|I

]
.

Making the choice α = (δs|I+t)
√

δ
s|I–t

, β = (δs|I–t)
√

δ
s|I–t

, we derive

〈Au, Aw〉 ≤
√

δ
s|I – t. ()
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On the other hand, we also have

〈Au, Aw〉 ≥ 
α + β

[
( – δs|I)‖αu + w‖

 – ( + δs|I)‖βu – w‖

]

–


α + β

(
α – β)( + t)‖u‖



= –


α + β

[
α(δs|I – t) + β(δs|I + t) + δs|I

]
.

Making the choice α = (δs|I–t)
√

δ
s|I–t

, β = (δs|I+t)
√

δ
s|I–t

, we get

〈Au, Aw〉 ≥ –
√

δ
s|I – t. ()

Combining () with () yields the desired inequality (). Next, noticing that AvS = A(v –
∑

j≥ AvSj ), we have

‖AvS‖
 = 〈AvS, Av〉 –

∑

j≥

〈AvS, AvSj〉

≤ ‖AvS‖‖Av‖ +
∑

j≥

√
δ

s|I – t‖vS‖‖vSj‖

= ‖vS‖

(√
 + t‖Av‖ +

√
δ

s|I – t
∑

j≥

‖vSj‖

)

. ()

According to Lemma A. and the setting of Sj, we have

∑

j≥

‖vSj‖, ≤
∑

j≥

[
√
s
‖vSj‖, +

√
s


(∥
∥vSj []

∥
∥

 –
∥
∥vSj [s]

∥
∥



)
]

≤ √
s
‖vSC ‖, +

√
s


∥
∥vS []

∥
∥



≤ √
s
‖vSC ‖, +




‖vS‖. ()

Substituting () into () and noticing (), we also have

( + t)‖vS‖ ≤ √
 + t‖Av‖ +

√
δ

s|I – t

√
s

‖vSC ‖, +

√
δ

s|I – t


‖vS‖,

that is,

‖vS‖ ≤
√

δ
s|I – t

√
s( + t)

‖vSC ‖, +

√
δ

s|I – t

( + t)
‖vS‖ +

√
 + t

‖Av‖.

Let

f (t) =

√
δ

s|I – t

 + t
, |t| ≤ δs|I , ()
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then it is not difficult to conclude that f (t) has a maximum point t = –δ
s|I in the closed

interval [–δs|I , δs|I ], so for |t| ≤ δs|I , we have

f (t) =

√
δ

s|I – t

 + t
≤ δs|I

√
 – δ

s|I
. ()

Therefore,

‖vS‖ ≤ δs|I
√

 – δ
s|I

√
s
‖vSC ‖, +

δs|I


√

 – δ
s|I

‖vS‖ +


√
 – δs|I

‖Av‖,

that is,

‖vS‖ ≤ δs|I


√

 – δ
s|I – δs|I

√
s
‖vSC ‖, +


√

 + δs|I


√

 – δ
s|I – δs|I

‖Av‖.

Here, we require


√

 – δ
s|I – δs|I > ,

δs|I


√

 – δ
s|I – δs|I

< , ()

which implies δ
s|I < 

 , that is, δs|I < √
 ≈ .. �

Remark  Substituting () into () and (), we can obtain the constants in Theorem .

Remark  Our result improves that of [], that is, the bound of block RIC δs|I is improved
from . to ..

4 Conclusions
In this paper, we gave a new bound on the block RIC δs|I < ., under this bound,
every block s-sparse signal can be exactly recovered via the l/l-minimization approach
in the noiseless case and is stably recovered in the noisy measurement case. The result
improves the bound on the block RIC δs|I in [].

Appendix
Lemma A. Suppose that v ∈ R

N is split into m blocks, v[], v[], . . . , v[m], which are of
length d, d, . . . , dm, respectively, that is,

v = [v, . . . , vd︸ ︷︷ ︸
v[]

, vd+, . . . , vd+d︸ ︷︷ ︸
v[]

, . . . , vN–dm+, . . . , vN
︸ ︷︷ ︸

v[m]

]T . ()

Suppose that the m blocks in x are rearranged by nonincreasing order for which

∥
∥v[]

∥
∥

 ≥ ∥
∥v[]

∥
∥

 ≥ · · · ≥ ∥
∥v[m]

∥
∥

 ≥ .



Gao and Ma Journal of Inequalities and Applications  (2017) 2017:174 Page 9 of 10

Then

√∥
∥v[]

∥
∥

 + · · · +
∥
∥v[m]

∥
∥

 ≤ ‖v[]‖ + · · · + ‖v[m]‖√
m

+
√

m


(∥
∥v[]

∥
∥

 –
∥
∥v[m]

∥
∥



)
. ()

Proof See Lemma . in [] for the details. �
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