12,301 research outputs found
No purification for two copies of a noisy entangled state
We consider whether two copies of a noisy entangled state can be transformed
into a single copy of greater purity using local operations and classical
communication. We show that it is never possible to achieve such a purification
with certainty when the family of noisy states is twirlable (i.e. when there
exists a local transformation that maps all states into the family, yet leaves
the family itself invariant). This implies that two copies of a Werner state
cannot be deterministically purified. Furthermore, due to the construction of
the proof, it will hold not only in quantum theory, but in any generalised
probabilistic theory. We use this to show that two copies of a noisy PR-box (a
hypothetical device more non-local than is allowed by quantum theory) cannot be
purified.Comment: 4 pages, 2 figure
'Doing Things Differently: Glastir Common Land Element and the Local Action Groups': An Evaluation of the Commons Development Officer Role using the Leader Methodology
Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K
The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design
PRODUCTION AND FINANCIAL IMPACTS OF THE ADOPTION OF BOVINE SOMATOTROPIN ON U.S. DAIRY FARMS
Production and financial impacts of recombinant bovine somatotropin (rbST) adoption are assessed using a survey of U.S. dairy operations and a model that corrects for self-selection bias. A substantial increase in milk production per cow is associated with rbST adoption, but large estimated financial impacts are not statistically significant. Substantial variation in the net returns of rbST adopters may be related to the management-intensive nature of rbST.Livestock Production/Industries,
Thermal expansion of graphite-epoxy between 116 K and 366 K
A Priest laser interferometer was developed to measure the thermal strain of composite laminates. The salient features of this interferometer are that: (1) it operates between 116 K and 366 K; (2) it is easy to operate; (3) minimum specimen preparation is required; (4) coefficients of thermal expansion in the range of 0-5 micro epsilon/K can be measured; and (5) the resolution of thermal strain is on the order of micro epsilon. The thermal response of quasi-isotropic, T300/5208, grahite-epoxy composite material was studied with this interferometer. The study showed that: (1) for the material tested, thermal cycling effects are negligible; (2) variability of thermal response from specimen to specimen may become significant at cryogenic temperatures; and (3) the thermal response of 0.6 cm and 2.5 cm wide specimens are the same above room temperature
Polarimetric Thermal to Visible Face Verification via Self-Attention Guided Synthesis
Polarimetric thermal to visible face verification entails matching two images
that contain significant domain differences. Several recent approaches have
attempted to synthesize visible faces from thermal images for cross-modal
matching. In this paper, we take a different approach in which rather than
focusing only on synthesizing visible faces from thermal faces, we also propose
to synthesize thermal faces from visible faces. Our intuition is based on the
fact that thermal images also contain some discriminative information about the
person for verification. Deep features from a pre-trained Convolutional Neural
Network (CNN) are extracted from the original as well as the synthesized
images. These features are then fused to generate a template which is then used
for verification. The proposed synthesis network is based on the self-attention
generative adversarial network (SAGAN) which essentially allows efficient
attention-guided image synthesis. Extensive experiments on the ARL polarimetric
thermal face dataset demonstrate that the proposed method achieves
state-of-the-art performance.Comment: This work is accepted at the 12th IAPR International Conference On
Biometrics (ICB 2019
Creating a Consistent Poverty Measure Over Time Using NAS Procedures: 1996-2005
This paper presents an experimental poverty measure and compares it to the current official measure, now more than 40 years old. The experimental measure is based on an approach, drawn from work by a National Academy of Sciences (NAS) expert Panel, to consistently define basic needs and family resources. The experimental thresholds are based on out-of-pocket spending by families on basic goods and services and are based on an “outflows” concept. The resource measure is based on an “inflows” concept and reflects money coming into the household that is available to meet one’s basic needs. The U.S. Consumer Expenditure Survey serves as the basis for the experimental thresholds and the Current Population Survey Annual Social and Economic Supplement serves as the basis for the resource measure. Results for 1996 to 2005 are reported with trends examined. An important finding is that increases in expenditures for shelter and utilities, captured in the new thresholds, suggest a greater increase in the number of families not able to meet basic needs than is reflected by the official poverty statistics.NAS, Poverty, Consumer Exenditure Survey, Current Population Survey
Some measurements of the dynamic and static stability of two blunt-nosed, low-fineness- ratio bodies of revolution in free flight at mequal4
Dynamic and static stability of two blunt nosed low fineness ratio bodies of revolution in free flight - ballistic
Sea surface and remotely sensed temperatures off Cape Mendocino, California
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field
Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs
Current optical space telescopes rely upon silicon Charge Coupled Devices
(CCDs) to detect and image the incoming photons. The performance of a CCD
detector depends on its ability to transfer electrons through the silicon
efficiently, so that the signal from every pixel may be read out through a
single amplifier. This process of electron transfer is highly susceptible to
the effects of solar proton damage (or non-ionizing radiation damage). This is
because charged particles passing through the CCD displace silicon atoms,
introducing energy levels into the semi-conductor bandgap which act as
localized electron traps. The reduction in Charge Transfer Efficiency (CTE)
leads to signal loss and image smearing. The European Space Agency's
astrometric Gaia mission will make extensive use of CCDs to create the most
complete and accurate stereoscopic map to date of the Milky Way. In the context
of the Gaia mission CTE is referred to with the complementary quantity Charge
Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that
threatens Gaia's performances. We present here a detailed Monte Carlo model
which has been developed to simulate the operation of a damaged CCD at the
pixel electrode level. This model implements a new approach to both the charge
density distribution within a pixel and the charge capture and release
probabilities, which allows the reproduction of CTI effects on a variety of
measurements for a large signal level range in particular for signals of the
order of a few electrons. A running version of the model as well as a brief
documentation and a few examples are readily available at
http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java
package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5
table
- …
