159 research outputs found

    Characterization of Recombinant Human PRG4 as an Ocular Surface Boundary Lubricant

    Get PDF
    Introduction: Dry-eye disease involves tear film instability that can result in surface-to-surface contact between the cornea and eyelid or contact lens, where boundary lubrication can be dominant1. Motivated by the recent discovery that proteoglycan 4 (PRG4, a mucin-like glycoprotein originally discovered in synovial fluid as a boundary lubricant2), functions as an ocular surface boundary lubricant3, advances in recombinant protein expression technology4, and PRG4’s potential use as a friction-reducing contact lens coating, the objectives of this study were to: 1) biochemically characterize recombinant human PRG4 (rh- PRG4); and 2) assess the boundary lubricating properties of rh-PRG4, both before and after autoclave sterilization, at a cornea-contact lens material (PDMS) biointerface. Methods: SDS-PAGE western blot analysis using a variety of anti-PRG4 antibodies and lectins was performed on native PRG4 (nPRG4) and rh-PRG4 samples, both nonreduced and reduced, with and without enzymatic removal of O-linked glycosylations. Human corneas and PDMS were articulated against each other, subject to physiological loads of 8-25 kPa, at effective sliding velocities of 0.3-30 mm/s. Test lubricant sequences were A) saline, rh-PRG4 @300μg/mL, nPRG4 @300μg/mL, and saline; and B) saline, autoclaved rh-PRG4 @300μg/mL, rh-PRG4 @300μg/mL, and saline. Static and kinetic coefficients of friction were calculated. Results: rh-PRG4 demonstrated similar immunoreactivity to nPRG4, and effectively lowered friction at the cornea-PDMS biointerface. Western blotting indicated immunoreactive rh-PRG4 bands had a similar apparent molecular weight (MW) to nPRG4, and decreased appropriately upon reduction as well as enzymatic removal of glycosylations. Kinetic friction coefficients, which were highest in saline (0.31±0.06 to 0.40±0.06, mean±SEM), were similar in rh-PRG4 (0.12±0.01 to 0.25±0.03) and nPRG4 (0.19±0.02 to 0.28±0.03) across all velocities. Autoclaved rh-PRG4 had similar values to rh-PRG4 as well (0.19±0.02 to 0.26±0.04, 0.16±0.02 to 0.26±0.02, respectively). Conclusions: rh-PRG4 demonstrates similar biochemical and ocular surface lubricating properties to nPRG4, and may function as an effective friction-reducing contact lens coating

    Stripped elliptical galaxies as probes of ICM physics : III. Deep Chandra observation of NGC 4552 - Measuring the viscosity of the intracluster medium

    Get PDF
    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89) which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin `horns' attached to the northern edge of the gas core [machacek05a]. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10×the radius of the remnant core) from the galaxy center. In our two previous papers [roediger15a,roediger15b], we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of ICM viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales

    Extended X-ray study of M49: The frontier of the Virgo cluster

    Get PDF
    The M49 group, residing outside the virial radius of the Virgo cluster, is falling onto the cluster from the south. We report results from deep XMM-Newton mosaic observations of M49. Its hot gas temperature is 0.8 keV at the group center and rises to 1.5 keV beyond the brightest group galaxy (BGG). The group gas extends to radii of ~300 kpc to the north and south. The observations reveal a cold front ~20 kpc north of the BGG center and an X-ray-bright stripped tail 70 kpc long and 10 kpc wide to the southwest of the BGG. We argue that the atmosphere of the infalling group was slowed by its encounter with the Virgo cluster gas, causing the BGG to move forward subsonically relative to the group gas. We measure declining temperature and metallicity gradients along the stripped tail. The tail gas can be traced back to the cooler and enriched gas uplifted from the BGG center by buoyant bubbles, implying that active galactic nucleus outbursts may have intensified the stripping process. We extrapolate to a virial radius of 740 kpc and derive a virial mass of 4.6 × 1013 M ⊙ for the M49 group. Its group atmosphere appears truncated and deficient when compared with isolated galaxy groups of similar temperatures. If M49 is on its first infall to Virgo, the infall region of a cluster could have profound impacts on galaxies and groups that are being accreted onto galaxy clusters. Alternatively, M49 may have already passed through Virgo once

    Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone

    Full text link
    The adrenal hormone corticosterone transcriptionally regulates responsive genes in the rodent hippocampus through nuclear mineralocorticoid and glucocorticoid receptors. Via this genomic pathway the hormone alters properties of hippocampal cells slowly and for a prolonged period. Here we report that corticosterone also rapidly and reversibly changes hippocampal signaling. Stress levels of the hormone enhance the frequency of miniature excitatory postsynaptic potentials in CA1 pyramidal neurons and reduce paired-pulse facilitation, pointing to a hormone-dependent enhancement of glutamate-release probability. The rapid effect by corticosterone is accomplished through a nongenomic pathway involving membrane-located receptors. Unexpectedly, the rapid effect critically depends on the classical mineralocorticoid receptor, as evidenced by the effectiveness of agonists, antagonists, and brain-specific inactivation of the mineralocorticoid but not the glucocorticoid receptor gene. Rapid actions by corticosterone would allow the brain to change its function within minutes after stress-induced elevations of corticosteroid levels, in addition to responding later through gene-mediated signaling pathways

    Sex-Specific Expression of the X-Linked Histone Demethylase Gene Jarid1c in Brain

    Get PDF
    Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5′end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function

    Early Loss of Xist RNA Expression and Inactive X Chromosome Associated Chromatin Modification in Developing Primordial Germ Cells

    Get PDF
    The inactive X chromosome characteristic of female somatic lineages is reactivated during development of the female germ cell lineage. In mouse, analysis of protein products of X-linked genes and/or transgenes located on the X chromosome has indicated that reactivation occurs after primordial germ cells reach the genital ridges.We present evidence that the epigenetic reprogramming of the inactive X-chromosome is initiated earlier than was previously thought, around the time that primordial germ cells (PGCs) migrate through the hindgut. Specifically, we find that Xist RNA expression, the primary signal for establishment of chromosome silencing, is extinguished in migrating PGCs. This is accompanied by displacement of Polycomb-group repressor proteins Eed and Suz(12), and loss of the inactive X associated histone modification, methylation of histone H3 lysine 27.We conclude that X reactivation in primordial germ cells occurs progressively, initiated by extinction of Xist RNA around the time that germ cells migrate through the hindgut to the genital ridges. The events that we observe are reminiscent of X reactivation of the paternal X chromosome in inner cell mass cells of mouse pre-implantation embryos and suggest a unified model in which execution of the pluripotency program represses Xist RNA thereby triggering progressive reversal of epigenetic silencing of the X chromosome

    Aurintricarboxylic acid prevents GLUR2 mRNA down-regulation and delayed neurodegeneration in hippocampal CA1 neurons of gerbil after global ischemia

    Full text link
    Aurintricarboxylic acid (ATA), an inhibitor of endonuclease activity and other protein–nucleic acid interactions, blocks apoptosis in several cell types and prevents delayed death of hippocampal pyramidal CA1 neurons induced by transient global ischemia. Global ischemia in rats and gerbils induces down-regulation of GluR2 mRNA and increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced Ca(2+) influx in CA1 before neurodegeneration. This result and neuroprotection by antagonists of AMPA receptors suggests that formation of AMPA receptors lacking GluR2, and therefore Ca(2+) permeable, leads to excessive Ca(2+) influx in response to endogenous glutamate; the resulting delayed neuronal death in CA1 exhibits many characteristics of apoptosis. In this study, we examined the effects of ATA on expression of mRNAs encoding glutamate receptor subunits in gerbil hippocampus after global ischemia. Administration of ATA by injection into the right cerebral ventricle 1 h before (but not 6 h after) bilateral carotid occlusion prevented the ischemia-induced decrease in GluR2 mRNA expression and the delayed neurodegeneration. These findings suggest that ATA is neuroprotective in ischemia by blocking the transcriptional changes leading to down-regulation of GluR2, rather than by simply blocking endonucleases, which presumably act later after Ca(2+) influx initiates apoptosis. Maintaining formation of Ca(2+) impermeable, GluR2 containing AMPA receptors could prevent delayed death of CA1 neurons after transient global ischemia, and block of GluR2 down-regulation may provide a further strategy for neuroprotection
    • …
    corecore