67 research outputs found

    Adaptive thrust vector control during on-orbit servicing

    Get PDF
    On-orbit servicing missions often include a final propulsive phase where a spacecraft pushes the other one towards a different orbit. Specifically this is the case of the debris grasping mission where the chaser, after capturing the target by means of robotic arms, has to perform a de-orbit operation. The large thrust involved needs a perfect alignment with respect to the center of mass or the system composed by chaser and target, in order to avoid attitude changes. Such accurate alignment is quite difficult to achieve especially when the characteristics of the target are not perfectly known. A procedure is proposed in this paper, allowing a complete estimation of the center of mass position and of the moments of inertia of the system, starting from the data obtained by the gyros mounted on board of the spacecraft. The output is used to design a maneuver for correcting the target and chaser relative position by moving the robotic arms. Numerical simulations show the proficiency and the applicability of the estimation algorithm and of re-alignment maneuver to a selected mission scenario

    A digitally-augmented ground space with timed visual cues for facilitating forearm crutches’ mobility

    Get PDF
    Persuasive technologies for physical rehabilitation have been pro posed in a number of different health interventions such as post-stroke gait rehabilitation. We propose a new persuasive system, called Augmented Crut ches, aimed at helping people to walk with crutches. People with injuries, or with any sort of mobility problem typically use assistive devices such as crut ches, walkers or canes in order to be able to walk more independently. However, walking with crutches is a learning skill that needs continuous repetition and constant attention to detail in order to walk correctly with them and without suffering negative consequences, such as falls or injuries. In close collaboration with therapists, we identify the main issues that patients face when walking with crutches. These vary from person to person, but the most common and hardest challenges are the position and coordination of the crutches. Augmented Crut ches studies human behavior aspects in these situations and augments the ground space around the user with digital visual cues where timing is the most important factor, without the need for a constant therapist providing manual help. This is performed through a mini-projector connected to a smartphone, worn by the user in a portable, lightweight manner. Our system helps people to learn how to walk using crutches with increased self-confidence and motivation. Additionally, our work identifies timing, controllability and awareness as the key design dimensions for the successful creation of persuasive, interactive experiences for learning how to walk with crutches.info:eu-repo/semantics/publishedVersio

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells

    Get PDF
    Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation

    Computing the Flat Outputs of Engel Differential Systems -- The Case Study of the Bi-steerable Car

    No full text
    Flatness is an interesting structural property of many engineering systems. Typically, the knowledge of the Flat Outputs of a system allows the design of open loop control and helps the design of control loops. When the literature includes many works on nding families of at systems or proposing tools to check the atness of a system, there has been very few works on the actual computation of the Flat Outputs which remains an open practical problem. In this paper, we present a necessary condition for the at coordinates change of any system represented by two differential 1forms in a state space of dimension 4. This condition is expressed by a partial differential equation and implies an approach to help the computation of the at outputs. Then, we apply our approach to a specific system, namely the Bi-steerable car for which we explicitely compute the at outputs. Hence, we solve the problem of the open loop control design for bi-steerable cars which was our initial and main motivation
    • …
    corecore