351 research outputs found

    An Iterative Size Effect Model of Surface Generation in Finish Machining

    Get PDF
    In this work, a geometric model for surface generation of finish machining was developed in MATLAB, and subsequently verified by experimental surface roughness data gathered from turning tests in Ti-6Al4V. The present model predicts the behavior of surface roughness at multiple length scales, depending on feed, nose radius, tool edge radius, machine tool error, and material-dependent parameters—in particular, the minimum effective rake angle. Experimental tests were conducted on a commercial lathe with slightly modified conventional tooling to provide relevant results. Additionally, the model-predicted roughness was compared against pedigreed surface roughness data from previous efforts that included materials 51CrV4 and AL 1075. Previously obscure machine tool error effects have been identified and can be modeled within the proposed framework. Preliminary findings of the model’s relevance to subsurface properties have also been presented. The proposed model has been shown to accurately predict roughness values for both long and short surface roughness evaluation lengths, which implies its utility not only as a surface roughness prediction tool, but as a basis for understanding three-dimensional surface generation in ductile-machining materials, and the properties derived therefrom

    The Effect of Cutting Edge Geometry, Nose Radius and Feed on Surface Integrity in Finish Turning of Ti-6Al4V

    Get PDF
    While the respective effects of nose radius, feed and cutting edge geometry on surface integrity have each been studied at depth, coupling between these effects is not yet sufficiently understood. Recent studies have clearly established that cutting edge micro-geometries may not only have positive effects on tool-life, but can also be used to tailor surface integrity characteristics, such as surface roughness and near-surface severe plastic deformation. To further a more fundamental understanding of the effects of cutting edge micro-geometries on surface integrity, experimental turning data was generated for a varied range of cutting tool geometries and feeds. Scanning laser interferometry was used in conjunction with a recently developed profile-analysis algorithm to analyze, characterize, and verify the geometry of complex cutting edge micro-geometries. Near surface nanostructure, and surface roughness of the produced surfaces were characterized and correlated to the varied tool geometries. An interaction between two geometry characteristics, predicted kinematic roughness and hone size, was discovered. Scanning laser interferometry analysis of the surfaces revealed that large hones provided either an increase or decrease in roughness, depending on predicted kinematic roughness

    Superconducting NdCeCuO Bicrystal Grain Boundary Josephson Junctions

    Full text link
    We have studied the electric transport properties of symmetrical [001] tilt NdCeCuO bicrystal grain boundary Josephson junctions (GBJs) fabricated on SrTiO bicrystal substrates with misorientation angles of 24 and 36.8 degree. The superconducting properties of the NdCeCuO-GBJs are similar to those of GBJs fabricated from the hole doped high temperature superconductors (HTS). The critical current density Jc decreases strongly with increasing misorientation angle. The products of the critical current Ic and the normal resistance Rn (about 0.1 mV at 4.2 K) are small compared to the gap voltage and fit well to the universal scaling law (IcRn is proportional to the square root of Jc) found for GBJs fabricated from the hole doped HTS. This suggests that the symmetry of the order parameter, which most likely is different for the electron and the hole doped HTS has little influence on the characteristic properties of symmetrical [001] tilt GBJs.Comment: 3 pages, 4 figures, to be published in Applied Physics Letter

    Andreev Bound States in High Temperature Superconductors

    Full text link
    Andreev bound states (ABS) at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of ABS in HTS employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBCO, BSCCO, and LSCO show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS NCCO no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented.Comment: 17 pages, 10 figures, to appear in Eur. Phys. J.

    Potential ring of Dirac nodes in a new polymorph of Ca3_3P2_2

    Full text link
    We report the crystal structure of a new polymorph of Ca3_3P2_2, and an analysis of its electronic structure. The crystal structure was determined through Rietveld refinements of powder synchrotron x-ray diffraction data. Ca3_3P2_2 is found to be a variant of the Mn5_5Si3_3 structure type, with a Ca ion deficiency compared to the ideal 5:3 stoichiometry to yield a charge-balanced compound. We also report the observation of a secondary phase, Ca5_5P3_3H, in which the Ca and P sites are fully occupied and the presence of interstitial hydride ions creates a closed-shell electron-precise compound. We show via electronic structure calculations of Ca3_3P2_2 that the compound is stabilized by a gap in the density of states compared to the hypothetical compound Ca5_5P3_3. Moreover, the calculated band structure of Ca3_3P2_2 indicates that it should be a three-dimensional Dirac semimetal with a highly unusual ring of Dirac nodes at the Fermi level. The Dirac states are protected against gap opening by a mirror plane in a manner analogous to graphene. The results suggest that further study of the electronic properties of Ca3_3P2_2 will be of interest

    Computationally Efficient, Multi-Domain Hybrid Modeling of Surface Integrity in Machining and Related Thermomechanical Finishing Processes

    Get PDF
    In order to enable more widespread implementation of sophisticated process modeling, a novel, rapidly deployable multi-physics hybrid model of surface integrity in finishing operations is proposed. Rather than modeling detailed chip formation mechanics, as is common in numerical models, the proposed models integrates existing analytical and semi-empirical models of the plastic, elastic, thermal and thermodynamic domains. Using this approach, highly complex surface integrity phenomena such as residual stresses, grain size, phase composition, microhardness profile, etc. can be accurately predicted in a manner of seconds. It is envisioned that this highly efficient modeling scheme will drive new innovations in surface engineering

    Termination dependent topological surface states of the natural superlattice phase Bi4_4Se3_3

    Get PDF
    We describe the topological surface states of Bi4_4Se3_3, a compound in the infinitely adaptive Bi2_2-Bi2_2Se3_3 natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi4_4Se3_3 therefore represents the only known compound with different topological states on differently terminated surfaces.Comment: 5 figures references added Published in PRB: http://link.aps.org/doi/10.1103/PhysRevB.88.08110

    Calcifediol is a safe and effective metabolite for raising vitamin D status and improving growth and feed conversion in rainbow trout

    Get PDF
    The vitamin D endocrine system is required for the transcriptional regulation of a myriad of vertebrate genes including those involved in bone health, growth, nutrient metabolism and immunity. The requirements of salmonids for vitamin D are amongst the highest for any aquaculture species. With nuances, the metabolism of the pre-vitamin cholecalciferol (D3) via calcifediol (25-OH-D3), required to produce the physiologically active hormone calcitriol (1,25-OH-D3) is conserved in fish. The composition of modern aquafeeds, growth in seawater and production challenges, such as disease, may result in the suboptimal biochemical activation of vitamin D hormone in fish. A 91-day experimental feeding trial was used to test the safety and efficacy of calcifediol for the supply of vitamin D to rainbow trout with an initial body weight of 57.6 g. A practical diet containing cholecalciferol within recommended levels (5240 IU) was supplemented with either 69.8, 687 or 6854 μg/kg calcifediol. The efficacy of calcifediol was determined by the assessment of zootechnical performance and the appearance of vitamin D metabolites in the blood. The safety of the dietary interventions was assessed from generic health indices, examination of gross pathologies, hematology, and blood chemistry. Test fish increased body weight at least 5.6-fold to 323.5 g over the experimental feeding period. The supplementation of 687 or 6854 μg/kg calcifediol resulted in significant improvements in growth rate and feed conversion (FCR). Whilst not detectable in control fish, calcifediol increased linearly according to dietary levels in the blood and to a lesser extent in the white muscle. The increases of calcifediol in the blood were accompanied by saturable increases of circulating active vitamin D. At the end of the 91-day feeding period, survival was 100%, no gross pathologies relating to the diets were observed, and health indices, hematology, and blood chemistry, including calcium and phosphorus, were not significantly altered. The supplementation of calcifediol to practical diets containing recommended levels of cholecalciferol improves zootechnical performance and ensures that maximal levels of active vitamin D are present in the blood to meet physiological demands. With a lack of significant effects on health indices, hematology, and blood chemistry, including calcium and phosphorus, the tested high doses of calcifediol are concluded to be safe for salmonids

    Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals

    Get PDF
    Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1−y_{1-y}Mn1−z_{1-z}Sb2_2, in which Dirac fermions coexist with broken time-reversal symmetry. After photoexcitation by a short pulse, all four relax in two stages, first sub-picosecond, and then few-picosecond. Their rapid relaxation suggests that these and related materials may be suited for optical switches and fast infrared detectors. The complex change of refractive index shows that photoexcited carrier populations persist for a few picoseconds
    • …
    corecore