research

Andreev Bound States in High Temperature Superconductors

Abstract

Andreev bound states (ABS) at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of ABS in HTS employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBCO, BSCCO, and LSCO show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS NCCO no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented.Comment: 17 pages, 10 figures, to appear in Eur. Phys. J.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019