4,592 research outputs found

    Magnetic Moments of Baryons with a Heavy Quark

    Full text link
    We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.Comment: Talk presented by HW at MRST'03 (Joe-Fest), Syracuse, NY, May 2003, 12 pages, uses AIP style files. Ref. adde

    Vibrations measured in the passenger cabins of two jet transport aircraft

    Get PDF
    Accelerations in the lateral and vertical directions were measured at two locations on the floor of a three-jet-engine aircraft and at two locations on the floor of a two-jet-engine aircraft during a total of 13 flights, each of which included taxiing, takeoff, ascent, cruise, descent, and landing. Accelerations over the frequency range 0 to 25 Hz were recorded continuously on magnetic tape and were synchronized with the VGH recorders in the aircraft so that vibratory accelerations could be correlated with the operating conditions of the aircraft. From the results it was indicated that the methodology used in segmenting the data, which were obtained in a continuous and repetitive manner, contributes to establishing baseline data representative of the flight characteristics of aircraft. Significant differences among flight conductions were found to occur. The lateral accelerations were approximately 15 percent of the vertical accelerations during flight but as much as 50 to 100 percent of the vertical accelerations during ground operations. The variation between the responses of the two aircraft was not statistically significant. The results also showed that more than 90 percent of the vibratory energy measured during flight occurred in the 0- to 3.0-Hz frequency range. Generally, the vibration amplitudes were normally distributed

    Polarized Line Formation in Multi-Dimensional Media.III. Hanle Effect with Partial Frequency Redistribution

    Full text link
    In the previous two papers, namely, \citet{anuknn11} and \citet{anuetal11} we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries, with partial frequency redistribution (PRD) as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I,U/IQ/I, U/I) in both these papers. In this paper we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors TQK\mathcal{T}^K_Q, developed in \citet{anuknn11}, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed in \citet{anuetal11}, is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) A comparison of emergent (I,Q/I,U/I)(I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I,U/I)(Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I,U/I)(Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.Comment: 31 pages, 14 figures, Submitted to ApJ, Under revie

    System for measuring passenger reaction to transportation-vehicle vibration

    Get PDF
    Equipment is capable of measuring frequencies from 0 to 50 Hz and is portable, light, inexpensive, and easily adaptable to field operations. System could be used in situations where it is necessary to record simultaneously subject response to other types of physical measurement or stimuli, such as temperature, noise, or pressure

    SURFACE TREATMENT FOR THE MITIGATION OF WHEY PROTEIN FOULING

    Get PDF
    Heat transfer fouling experiments were carried out in a temperature controlled stirred vessel using aqueous solutions of whey protein concentrate in the concentration range of 3 to 3.5 wt-% at a bulk temperature of 50 °C and pH of 6. Heat transfer data were obtained from thermocouples embedded in an immersed electrical heating rod with various metal plates attached with-and-without surface treatments. Measurements included solution temperature, heating element surface temperature, and heat duty. Results are presented as fouling resistance versus time for aluminum, copper, stainless steel, electro-polished stainless steel, and surfaces coated with DLC and doped with Si , SiO, as well as DLC-coating of an electro-polished stainless steel. Reducing surface roughness was found to mitigate fouling but the combination of both surface treatments, DLC coatings, and electro-polishing gave the best performance. The experimental results demonstrate the potential and value for reducing the adhesive behavior of whey protein fouling layers using modified surfaces. Also a comparison of these results with those for crystallization fouling show the same effects of the surface modification on nucleation and crystal growth. Of particular importance is the influence on the cleaning performance where the main potential can be expected

    INFLUENCE OF DIFFERENT SURFACE MATERIALS ON NUCLEATION AND CRYSTAL GROWTH IN HEAT EXCHANGERS

    Get PDF
    The influence of different materials on the fouling tendency in saline calcium sulfate solution was investigated. The effects of the untreated material on the crystallization process have been studied experimentally in the micro- and macroscopic scale. The crystallization in the induction period was visualized with SEM and AFM to locate preferred nucleation spots and to visualize the crystal growth. The different materials are showing different crystal growth behavior (number and size of the crystals). These results are corresponding with the macroscopic fouling results with limited shear stress. Also different roughness values on stainless steel have been studied with respect to fouling tendency. The induction time can be extended with smoother surfaces due to the limitation of nucleation spots. With higher fluid velocities, the adhesion of the forming crystals on the heat transfer surface dominates the length of the induction time

    EXTENDING THE INDUCTION PERIOD OF CRYSTALLIZATION FOULING THROUGH SURFACE COATING

    Get PDF
    To minimize the negative effects of scale formation in heat exchangers, new anti-fouling strategies are focusing on the modification of heat transfer surfaces. These modifications should lead to tailored made surfaces for different technical applications. Aim of this surface modification is the extension of the induction period to minimize the negative effects of fouling and maximize the endurance of the heat exchanger. To achieve such, different surface coatings on stainless steel were investigated in respect of fouling tendency. The effect of flow velocity respectively Reynolds number on the induction time of CaSO4 crystallization fouling were tested in different test units. Diamond like carbon coatings are extending the induction time in every measured flow velocity. At higher Reynolds numbers, the effect of different surface crystallization due to energetic modification is reduced because of the dominating effect of the low adhesive surface. Thus the induction time can be extended by the factor of 2 for low fluid velocities (DLC or SICON®) and more than 20 for higher Reynolds numbers (DLC and SICON®). The combination of limited nucleation spots due to electro-chemical treatment of the substrate before coating can be a tailored made surface with maximum induction time for crystallization fouling
    • …
    corecore