443 research outputs found

    Trends and characteristics of attendance at the emergency department of a Swiss university hospital: 2002-2012.

    Get PDF
    BACKGROUND: The numbers of people attending emergency departments (EDs) at hospitals are increasing. We aimed to analyse trends in ED attendance at a Swiss university hospital between 2002 and 2012, focussing on age-related differences and hospital admission criteria. METHODS: We used hospital administrative data for all patients aged ≥16 years who attended the ED (n = 298,306) at this university hospital between 1 January 2002, and 31 December 2012. We descriptively analysed the numbers of ED visits according to the admission year and stratified by age (≥65 vs <65 years). RESULTS: People attending the ED were on average 46.6 years old (standard deviation 20 years, maximum range 16‒99 years). The annual number of ED attendances grew by n = 6,639 (27.6%) from 24,080 in 2002 to 30,719 in 2012. In the subgroup of patients aged ≥65 the relative increase was 42.3%, which is significantly higher (Pearson's χ2 = 350.046, df = 10; p = 0.000) than the relative increase of 23.4% among patients <65 years. The subgroup of patients ≥65 years attended the ED more often because of diseases (n = 56,307; 85%) than accidents (n = 9,844; 14.9%). This subgroup (patients ≥65 years) was also more often admitted to hospital (Pearson's χ2 = 23,377.190; df = 1; p = 0.000) than patients <65 years. CONCLUSIONS: ED attendance of patients ≥65 years increased in absolute and relative terms. The study findings suggest that staff of this ED may want to assess the needs of patients ≥65 years and, if necessary, adjust the services (e.g., adapted triage scales, adapted geriatric screenings, and adapted hospital admission criteria)

    The rise of bio-inspired polymer compartments responding to pathology-related signals

    Get PDF
    Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications

    MSL Entry, Descent, and Landing Instrumentation: Return on Investment

    Get PDF
    On Aug 5, 2012 the Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI) suite on MSL entry vehicle heatshield suc-cessfully returned surface pressure and in-depth temperature data.1,2 The MEDLI data has given scientists and engineers an unprecedented ability to reconstruct entry environment, atmospheric density, and flight trajectory, and flight validation of predic-tions vehicle aerodynamics and thermal protection system (TPS) performance. This presentation will dis-cuss key findings from MEDLI, some of which are being applied to improve definition of aerothermal environment and TPS sizing margins for existing NASA entry missions. The postflight analysis has shown that a significant thermal protection mass saving upon redesign is possible for an MSL-class vehicle. The success of MEDLI has also demonstrated and qualified robust flight instrumentation technologies at very low risk to the mission. The potential benefits of MEDLI to planetary exploration and sample return missions, as well as to exploration class missions to Mars will be presented

    Исследование датчиков рН и удельной электрической проводимости фирмы WTW в системе автоматизированного контроля качества очистки сточных вод

    Get PDF
    We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity. (C) 2009 Optical Society of Americ

    Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion

    Get PDF
    We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the noise resulting from the quantum back action appears among the various contributions from other noise sources. We do not assume an ideal (homodyne) phase measurement, but rather consider phase modulation detection, which we show has a different shot noise level. We also take into account the effects of thermal damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to experimental parameters, so as to make direct comparisons with current experiments simple. We also show that in this situation, the standard Brownian motion master equation is inadequate for describing the thermal damping of the mirror, as it produces a spurious term in the steady-state phase fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi, Europhys. Lett. {\bf 22}, 1 (1993)] rectifies this inadequacy.Comment: 12 pages revtex, 2 figure

    Spatial organization acts on cell signaling: how physical force contributes to the development of cancer

    Get PDF
    Cells constantly encounter physical forces and respond to neighbors and circulating factors by triggering intracellular signaling cascades that in turn affect their behavior. The mechanisms by which cells transduce mechanical signals to downstream biochemical changes are not well understood. In their work, Salaita and coworkers show that the spatial organization of cell surface receptors is crucial for mechanotransduction. Consequently, force modulation that disrupts the mechanochemical coupling may represent a critical step in cancerogenesis
    corecore