182 research outputs found
Roles of the color antisymmetric ghost propagator in the infrared QCD
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not
agree completely with continuum theory. There are indications that the ghost
propagator in the infrared region is not purely color diagonal as in high
energy region. After presenting lattice simulation of configurations produced
with Kogut-Susskind fermion (MILC collaboration) and those with domain wall
fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the
ghost-gluon-ghost vertex how the square of the color antisymmetric ghost
contributes. Then the effect of the vertex correction to the gluon propagator
and the ghost propagator is investigated.
Recent Dyson-Schwinger equation analysis suggests the ghost dressing function
finite and no infrared enhancement or . But the ghost
propagator renormalized by the loop containing a product of color antisymmetric
ghost is expected to behave as with
with , if the fixed point
scenario is valid. I interpret the solution should contain a
vertex correction. The infrared exponent of our lattice Landau gauge gluon
propagator of the RBC/UKQCD is and that of MILC is about
-0.7.
The implication for the Kugo-Ojima color confinement criterion, QCD effective
coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be
published in Few-Body System
Studying unquenching effects in QCD with Dyson-Schwinger equations
We summarise recent results on the properties of gluons, quarks and light
mesons from the Green's functions approach to QCD. We discuss a
self-consistent, infrared power law solution for the Schwinger-Dyson equations
of the 1PI-Greens functions of Yang-Mills theory. The corresponding running
coupling has a universal fixed point at zero momentum. Based on these
analytical results a truncation scheme for the coupled system of
Schwinger-Dyson equations for the propagators of QCD and the Bethe-Salpeter
equation for light mesons has been formulated. We compare numerical results for
charge eigenstate vector and pseudoscalar meson observables with corresponding
lattice data. The effects of unquenching the system are found to be small but
not negligible.Comment: 8 pages, 8 figures. Invited talk given by C.S.F. at the 'Workshop on
computational hadron physics', Sept. 13 - 17, Nikosia, Cypru
Large volume behavior of Yang-Mills propagators
We summarize results on finite-volume effects in the propagators of Landau
gauge Yang-Mills theory using Dyson-Schwinger equations on a 4-dimensional
torus. We demonstrate explicitly how the solutions for the gluon and the ghost
propagator tend towards their respective infinite volume forms in the
corresponding limit. We discuss the relation of our solutions with results from
lattice Monte-Carlo simulations.Comment: 7 pages, 2 figures, Presented by CF at the XXV International
Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg,
German
Infrared Properties of QCD from Dyson-Schwinger equations
I review recent results on the infrared properties of QCD from
Dyson-Schwinger equations. The topics include infrared exponents of
one-particle irreducible Green's functions, the fixed point behaviour of the
running coupling at zero momentum, the pattern of dynamical quark mass
generation and properties of light mesons.Comment: 47 pages, 19 figures, Topical Review to be published in J.Phys.G, v2:
typos corrected and some references adde
Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory
The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived
from the (standard, second order) functional formalism. It is shown how these
identities form closed sets from which one can in principle fully determine the
Green's functions involving the temporal component of the gauge field without
approximation, given appropriate input.Comment: 20 pages, no figure
Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results
We investigate the Dyson-Schwinger equations for the gluon and ghost
propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two
dimensions. While this simplifies some aspects of the calculations as compared
to three and four dimensions, new complications arise due to a mixing of
different momentum regimes. As a result, the solutions for the propagators are
more sensitive to changes in the three-point functions and the ansaetze used
for them at the leading order in a vertex a expansion. Here, we therefore go
beyond this common truncation by including the ghost-gluon vertex
self-consistently for the first time, while using a model for the three-gluon
vertex which reproduces the known infrared asymptotics and the zeros at
intermediate momenta as observed on the lattice. A separate computation of the
three-gluon vertex from the results is used to confirm the stability of this
behavior a posteriori. We also present further arguments for the absence of the
decoupling solution in two dimensions. Finally, we show how in general the
infrared exponent kappa of the scaling solutions in two, three and four
dimensions can be changed by allowing an angle dependence and thus an essential
singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex
models; identical to version published in JHE
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
On the infrared scaling solution of SU(N) Yang-Mills theories in the maximally Abelian gauge
An improved method for extracting infrared exponents from functional
equations is presented. The generalizations introduced allow for an analysis of
quite complicated systems such as Yang-Mills theory in the maximally Abelian
gauge. Assuming the absence of cancellations in the appropriately renormalized
integrals the only consistent scaling solution yields an infrared enhanced
diagonal gluon propagator in support of the Abelian dominance hypothesis. This
is explicitly shown for SU(2) and subsequently verified for SU(N), where
additional interactions exist. We also derive the most infrared divergent
scaling solution possible for vertex functions in terms of the propagators'
infrared exponents. We provide general conditions for the existence of a
scaling solution for a given system and comment on the cases of linear
covariant gauges and ghost anti-ghost symmetric gauges.Comment: 23 pages, 10 figures; version coincides with version published in
EPJ
Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory
Analytic solutions for the three-gluon and ghost-gluon vertices in Landau
gauge Yang-Mills theory at low momenta are presented in terms of hypergeometric
series. They do not only show the expected scaling behavior but also additional
kinematic divergences when only one momentum goes to zero. These singularities,
which have also been proposed previously, induce a strong dependence on the
kinematics in many dressing functions. The results are generalized to two and
three dimensions and a range of values for the ghost propagator's infrared
exponent kappa.Comment: 21 pages, 29 figures; numerical data of the infrared dressing
functions can be obtained from the authors v2: a few minor changes,
corresponds to version appearing in EPJ
On the gauge boson's properties in a candidate technicolor theory
The technicolor scenario replaces the Higgs sector of the standard model with
a strongly interacting sector. One candidate for a realization of such a sector
is two-technicolor Yang-Mills theory coupled to two degenerate flavors of
adjoint, massless techniquarks. Using lattice gauge theory the properties of
the technigluons in this scenario are investigated as a function of the
techniquark mass towards the massless limit. For that purpose the minimal
Landau gauge two-point and three-point correlation functions are determined,
including a detailed systematic error analysis. The results are, within the
relatively large systematic uncertainties, compatible with a behavior very
similar to QCD at finite techniquark mass. However, the limit of massless
techniquarks exhibits features which could be compatible with a
(quasi-)conformal behavior.Comment: 27 pages, 17 figures, 1 table; v2: persistent notational error
corrected, some minor modification
- …
