247 research outputs found
Serum opsonin ficolin-A enhances host-fungal interactions and modulates cytokine expression from human monocyte-derived macrophages and neutrophils following Aspergillus fumigatus challenge.
Invasive aspergillosis is a devastating invasive fungal disease associated with a high mortality rate in the immunocompromised, such as leukaemia patients, transplant patients and those with HIV/AIDS. The rodent serum orthologue of human L-ficolin, ficolin-A, can bind to and opsonize Aspergillus fumigatus, the pathogen that causes invasive aspergillosis, and may participate in fungal defence. Using human monocyte-derived macrophages and neutrophils isolated from healthy donors, we investigated conidial association and fungal viability by flow cytometry and microscopy. Additionally, cytokine production was measured via cytometric bead arrays. Ficolin-A opsonization was observed to significantly enhance association of conidia, while also inhibiting hyphal growth and contributing to increased fungal killing following incubation with monocyte-derived macrophages and neutrophils. Additionally, ficolin-A opsonization was capable of manifesting a decrease in IL-8, IL-1β, IL-6, IL-10 and TNF-α production from MDM and IL-1β, IL-6 and TNF-α from neutrophils 24 h post-infection. In conclusion, rodent ficolin-A is functionally comparable to human L-ficolin and is capable of modulating the innate immune response to A. fumigatus, down-regulating cytokine production and could play an important role in airway immunity
First hospital outbreak of the globally emerging Candida auris in a European hospital
Background: Candida auris is a globally emerging multidrug resistant fungal pathogen causing nosocomial transmission. We report an ongoing outbreak of C. auris in a London cardio-thoracic center between April 2015 and July 2016. This is the first report of C. auris in Europe and the largest outbreak so far. We describe the identification, investigation and implementation of control measures. Methods: Data on C. auris case demographics, environmental screening, implementation of infection prevention/control measures, and antifungal susceptibility of patient isolates were prospectively recorded then analysed retrospectively. Speciation of C. auris was performed by MALDI-TOF and typing of outbreak isolates performed by amplified fragment length polymorphism (AFLP). Results: This report describes an ongoing outbreak of 50 C. auris cases over the first 16 month (April 2015 to July 2016) within a single Hospital Trust in London. A total of 44 % (n = 22/50) patients developed possible or proven C. auris infection with a candidaemia rate of 18 % (n = 9/50). Environmental sampling showed persistent presence of the yeast around bed space areas. Implementation of strict infection and prevention control measures included: isolation of cases and their contacts, wearing of personal protective clothing by health care workers, screening of patients on affected wards, skin decontamination with chlorhexidine, environmental cleaning with chorine based reagents and hydrogen peroxide vapour. Genotyping with AFLP demonstrated that C. auris isolates from the same geographic region clustered. Conclusion: This ongoing outbreak with genotypically closely related C. auris highlights the importance of appropriate species identification and rapid detection of cases in order to contain hospital acquired transmission
The serum opsonin L-ficolin is detected in lungs of human transplant recipients following fungal infections and modulates inflammation and killing of Aspergillus fumigatus.
BACKGROUND: Invasive aspergillosis (IA) is a life-threatening systemic fungal infection in immunocompromised individuals that is caused by Aspergillus fumigatus. The human serum opsonin, L-ficolin, has been observed to recognize A. fumigatus and could participate in fungal defense. METHODS: Using lung epithelial cells, primary human monocyte-derived macrophages (MDMs), and neutrophils from healthy donors, we assessed phagocytosis and killing of L-ficolin-opsonized live A. fumigatus conidia by flow cytometry and microscopy. Additionally, cytokines were measured by cytometric bead array, and L-ficolin was measured in bronchoalveolar lavage (BAL) fluid from lung transplant recipients by enzyme-linked immunosorbent assay. RESULTS: L-ficolin opsonization increased conidial uptake and enhanced killing of A. fumigatus by MDMs and neutrophils. Opsonization was also shown to manifest an increase in interleukin 8 release from A549 lung epithelial cells but decreased interleukin 1β, interleukin 6, interleukin 8, interleukin 10, and tumor necrosis factor α release from MDMs and neutrophils 24 hours after infection. The concentration of L-ficolin in BAL fluid from patients with fungal infection was significantly higher than that for control subjects (P = .00087), and receiving operating characteristic curve analysis highlighted the diagnostic potential of L-ficolin for lung infection (area under the curve, 0.842; P < .0001). CONCLUSIONS: L-ficolin modulates the immune response to A. fumigatus. Additionally, for the first time, L-ficolin has been demonstrated to be present in human lungs
Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection
Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients
Candida tropicalis has been reported to be one of the Candida species which is most likely to cause bloodstream and urinary tract infections in hospitalized patients. Accordingly, the aim of this study was to characterize the virulence of C. tropicalis by assessing antifungal susceptibility and comparing the expression of several virulence factors. This study was conducted with seven isolates of C. tropicalis from urine and blood cultures and from central venous catheter. C. tropicalis ATCC 750 was used as reference strain. Yeasts adhered (2 h) to epithelial cells and silicone and 24 h biofilm biomass were determined by crystal violet staining. Pseudohyphae formation ability was determined after growth in fetal bovine serum. Enzymes production (hemolysins, proteases, phospholipases) was assessed by halo formation on agar plates. Susceptibility to antifungal agents was determined by E-test. Regarding adhesion, it can be highlighted that C. tropicalis strains adhered significantly more to epithelium than to silicone. Furthermore, all C. tropicalis strains were able to form biofilms and to express total hemolytic activity. However, protease was only produced by two isolates from urine and by the isolates from catheter and blood. Moreover, only one C. tropicalis (from catheter) was phospholipase positive. All isolates were susceptible to voriconazole, fluconazole and amphotericin B. Four strains were susceptible-dose dependent to itraconazole and one clinical isolate was found to be resistant
A multisite evaluation of antifungal use in critical care: implications for antifungal stewardship
Background:
ICUs are settings of high antifungal consumption. There are few data on prescribing practices in ICUs to guide antifungal stewardship implementation in this setting.
Methods:
An antifungal therapy (AFT) service evaluation (15 May–19 November 2019) across ICUs at three London hospitals, evaluating consumption, prescribing rationale, post-prescription review, de-escalation and final invasive fungal infection (IFI) diagnostic classification.
Results:
Overall, 6.4% of ICU admissions (305/4781) received AFT, accounting for 11.41 days of therapy/100 occupied bed days (DOT/100 OBD). The dominant prescribing mode was empirical (41% of consumption), followed by targeted (22%), prophylaxis (18%), pre-emptive (12%) and non-invasive (7%). Echinocandins were the most commonly prescribed drug class (4.59 DOT/100 OBD). In total, 217 patients received AFT for suspected or confirmed IFI; 12%, 10% and 23% were classified as possible, probable or proven IFI, respectively. Hence, in 55%, IFI was unlikely. Proven IFI (n = 50) was mostly invasive candidiasis (92%), of which 48% had been initiated on AFT empirically before yeast identification. Where on-site (1 → 3)-β-D-glucan (BDG) testing was available (1 day turnaround), in those with suspected but unproven invasive candidiasis, median (IQR) AFT duration was 10 (7–15) days with a positive BDG (≥80 pg/mL) versus 8 (5–9) days with a negative BDG (<80 pg/mL). Post-prescription review occurred in 79% of prescribing episodes (median time to review 1 [0–3] day). Where suspected IFI was not confirmed, 38% episodes were stopped and 4% de-escalated within 5 days.
Conclusions:
Achieving a better balance between promptly treating IFI patients and avoiding inappropriate antifungal prescribing in the ICU requires timely post-prescription review by specialist multidisciplinary teams and improved, evidence-based-risk prescribing strategies incorporating rapid diagnostics to guide AFT start and stop decisions
Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates
Open access via the Springer Compact Agreement. We are grateful to Arunaloke Chakrabarti, Anuradha Chowdhary, Elizabeth Johnson (PHE), Takashi Kubota, and Shawn Lockhart (CDC) for providing strains. Flow cytometry was performed at the Iain Fraser Cytometry Centre (IFCC), University of Aberdeen (Raif Yuecel). This work was funded by the Medical Research Council (MRC) Centre for Medical Mycology at the University of Aberdeen (MR/P501955/1), a Wellcome Trust Institutional Strategic Support Fund grant awarded to the University of Aberdeen (204815/Z/16/Z), a Tenovus Scotland project grant (G17.02), a Royal Society Research Grant (RG140254) to AL, and Wellcome Trust Strategic Award, Senior Investigator and Collaborative Awards (080088, 086827, 075470, 099215, and 097377) to NARG.Peer reviewe
- …
