203 research outputs found

    Serum opsonin ficolin-A enhances host-fungal interactions and modulates cytokine expression from human monocyte-derived macrophages and neutrophils following Aspergillus fumigatus challenge.

    Get PDF
    Invasive aspergillosis is a devastating invasive fungal disease associated with a high mortality rate in the immunocompromised, such as leukaemia patients, transplant patients and those with HIV/AIDS. The rodent serum orthologue of human L-ficolin, ficolin-A, can bind to and opsonize Aspergillus fumigatus, the pathogen that causes invasive aspergillosis, and may participate in fungal defence. Using human monocyte-derived macrophages and neutrophils isolated from healthy donors, we investigated conidial association and fungal viability by flow cytometry and microscopy. Additionally, cytokine production was measured via cytometric bead arrays. Ficolin-A opsonization was observed to significantly enhance association of conidia, while also inhibiting hyphal growth and contributing to increased fungal killing following incubation with monocyte-derived macrophages and neutrophils. Additionally, ficolin-A opsonization was capable of manifesting a decrease in IL-8, IL-1β, IL-6, IL-10 and TNF-α production from MDM and IL-1β, IL-6 and TNF-α from neutrophils 24 h post-infection. In conclusion, rodent ficolin-A is functionally comparable to human L-ficolin and is capable of modulating the innate immune response to A. fumigatus, down-regulating cytokine production and could play an important role in airway immunity

    Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms

    Get PDF
    Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection

    First hospital outbreak of the globally emerging Candida auris in a European hospital

    Get PDF
    Background: Candida auris is a globally emerging multidrug resistant fungal pathogen causing nosocomial transmission. We report an ongoing outbreak of C. auris in a London cardio-thoracic center between April 2015 and July 2016. This is the first report of C. auris in Europe and the largest outbreak so far. We describe the identification, investigation and implementation of control measures. Methods: Data on C. auris case demographics, environmental screening, implementation of infection prevention/control measures, and antifungal susceptibility of patient isolates were prospectively recorded then analysed retrospectively. Speciation of C. auris was performed by MALDI-TOF and typing of outbreak isolates performed by amplified fragment length polymorphism (AFLP). Results: This report describes an ongoing outbreak of 50 C. auris cases over the first 16 month (April 2015 to July 2016) within a single Hospital Trust in London. A total of 44 % (n = 22/50) patients developed possible or proven C. auris infection with a candidaemia rate of 18 % (n = 9/50). Environmental sampling showed persistent presence of the yeast around bed space areas. Implementation of strict infection and prevention control measures included: isolation of cases and their contacts, wearing of personal protective clothing by health care workers, screening of patients on affected wards, skin decontamination with chlorhexidine, environmental cleaning with chorine based reagents and hydrogen peroxide vapour. Genotyping with AFLP demonstrated that C. auris isolates from the same geographic region clustered. Conclusion: This ongoing outbreak with genotypically closely related C. auris highlights the importance of appropriate species identification and rapid detection of cases in order to contain hospital acquired transmission

    The serum opsonin L-ficolin is detected in lungs of human transplant recipients following fungal infections and modulates inflammation and killing of Aspergillus fumigatus.

    Get PDF
    BACKGROUND: Invasive aspergillosis (IA) is a life-threatening systemic fungal infection in immunocompromised individuals that is caused by Aspergillus fumigatus. The human serum opsonin, L-ficolin, has been observed to recognize A. fumigatus and could participate in fungal defense. METHODS: Using lung epithelial cells, primary human monocyte-derived macrophages (MDMs), and neutrophils from healthy donors, we assessed phagocytosis and killing of L-ficolin-opsonized live A. fumigatus conidia by flow cytometry and microscopy. Additionally, cytokines were measured by cytometric bead array, and L-ficolin was measured in bronchoalveolar lavage (BAL) fluid from lung transplant recipients by enzyme-linked immunosorbent assay. RESULTS: L-ficolin opsonization increased conidial uptake and enhanced killing of A. fumigatus by MDMs and neutrophils. Opsonization was also shown to manifest an increase in interleukin 8 release from A549 lung epithelial cells but decreased interleukin 1β, interleukin 6, interleukin 8, interleukin 10, and tumor necrosis factor α release from MDMs and neutrophils 24 hours after infection. The concentration of L-ficolin in BAL fluid from patients with fungal infection was significantly higher than that for control subjects (P = .00087), and receiving operating characteristic curve analysis highlighted the diagnostic potential of L-ficolin for lung infection (area under the curve, 0.842; P < .0001). CONCLUSIONS: L-ficolin modulates the immune response to A. fumigatus. Additionally, for the first time, L-ficolin has been demonstrated to be present in human lungs

    Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis.

    Get PDF
    Cases of COVID-19 associated pulmonary aspergillosis (CAPA) are being increasingly reported and physicians treating patients with COVID-19-related lung disease need to actively consider these fungal co-infections. The SARS-CoV-2 (COVID-19) virus causes a wide spectrum of disease in healthy individuals as well as those with common comorbidities [1]. Severe COVID-19 is characterised acute respiratory distress syndrome (ARDS) secondary to viral pneumonitis, treatment of which may require mechanical ventilation or extracorporeal membrane oxygenation (ECMO) [2]. Clinicians are alert to the possibility of bacterial co-infection as a complication of lower respiratory tract viral infection; for example a recent review found that 72% of patients with COVID-19 received antimicrobial therapy [3]. However, the risk of fungal co-infection, in particular COVID-19 associated pulmonary aspergillosis (CAPA), remains underappreciated. Fungal disease consistent with invasive aspergillosis (IA) has been observed with other severe Coronaviruses such as Severe Acute Respiratory Syndrome (SARS-CoV-2003) [4, 5] and Middle East Respiratory Syndrome (MERS-CoV) [6]. From the outset of the COVID-19 pandemic, there were warning signs of secondary invasive fungal infection; Aspergillus flavus was isolated from the respiratory tract from one of 99 patients in the first COVID-19 cohort from Wuhan to be reported in any detail [2] and Aspergillus spp. were isolated from 2/52 (3.8%) of a subsequent cohort of critically unwell patients from this region [7]. More recently, retrospective case series from Belgium [8], France [9], The Netherlands [10] and Germany [11] have reported evidence of CAPA in an alarming 20–35% of mechanically ventilated patients

    The role of water fittings in intensive care rooms as reservoirs for the colonization of patients with Pseudomonas aeruginosa

    Get PDF
    International audienceOBJECTIVE: To assess the role of the water environment in the Pseudomonas aeruginosa colonization of patients in intensive care units in the absence of a recognized outbreak. DESIGN AND SETTING: Prospective, single-centre study over an 8-week period in two adult ICUs at a university hospital. Environmental samples were taken from the water fittings of rooms once per week, during a 8-week period. Patients were screened weekly for P. aeruginosa carriage. Environmental and humans isolates were genotyped by using pulsed-field gel electrophoresis. RESULTS: P. aeruginosa was detected in 193 (86.2%) of the 224 U-bend samples and 10 of the 224 samples taken from the tap (4.5%). Seventeen of the 123 patients admitted were colonized with P. aeruginosa. Only one of the 14 patients we were able to evaluate was colonized by a clone present in the water environment of his room before the patient's first positive sample was obtained. CONCLUSION: The role of the water environment in the acquisition of P. aeruginosa by intensive care patients remains unclear, but water fittings seem to play a smaller role in non-epidemic situations than expected by many operational hospital hygiene teams
    corecore