26 research outputs found

    Models, measurement and inference in epithelial tissue dynamics

    Get PDF
    The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison

    Diagnostic examination of the child with urolithiasis or nephrocalcinosis

    Get PDF
    Urolithiasis and nephrocalcinosis are more frequent in children then currently anticipated, but still remain under- or misdiagnosed in a significant proportion of patients, since symptoms and signs may be subtle or misleading. All children with colicky abdominal pain or macroscopic hematuria should be examined thoroughly for urolithiasis. Also, other, more general, abdominal manifestations can be the first symptoms of renal stones. The patients and their family histories, as well as physical examination, are important initial steps for diagnostic evaluation. Thereafter, diagnostic imaging should be aimed at the location of calculi but also at identification of urinary tract anomalies or acute obstruction due to stone disease. This can often be accomplished by ultrasound examination alone, but sometimes radiological methods such as plain abdominal films or more sensitive non-enhanced computed tomography are necessary. Since metabolic causes are frequent in children, diagnostic evaluation should be meticulous so that metabolic disorders that cause recurrent urolithiasis or even renal failure, such as the primary hyperoxalurias and others, can be ruled out. The stone is not the disease itself; it is only one serious sign! Therefore, thorough and early diagnostic examination is mandatory for every infant and child with the first stone event, or with nephrocalcinosis

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    A Sub-Cellular Viscoelastic Model for Cell Population Mechanics

    Get PDF
    Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and ‘in silico’ (computational) models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the communication between cells and their microenvironment while simultaneously allowing for the formation of clusters or sheets of cells that act together as one complex tissue

    Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia

    Get PDF
    <div><p>Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.</p></div
    corecore