1,186 research outputs found

    Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces

    Full text link
    Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, describing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.Comment: 20 pages, 9 figure

    Enhanced thermal Hall effect in the square-lattice N\'eel state

    Get PDF
    Recent experiments on several cuprate compounds have identified an enhanced thermal Hall response in the pseudogap phase. Most strikingly, this enhancement persists even in the undoped system, which challenges our understanding of the insulating parent compounds. To explain these surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet from a confining N\'eel state to a state with coexisting N\'eel and semion topological order. The transition is driven by an applied magnetic field and involves no change in the symmetry of the state. The critical point is described by a strongly-coupled conformal field theory with an emergent global SO(3)SO(3) symmetry. The field theory has four different formulations in terms of SU(2)SU(2) or U(1)U(1) gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of freedom. We show how proximity of the confining N\'eel state to the critical point can explain the enhanced thermal Hall effect seen in experiment.Comment: 8+5 pages, 4+1 figure

    Pairing in graphene-based moir\'e superlattices

    Full text link
    We present a systematic classification and analysis of possible pairing instabilities in graphene-based moir\'e superlattices. Motivated by recent experiments on twisted double-bilayer graphene showing signs of triplet superconductivity, we analyze both singlet and triplet pairing separately, and describe how these two channels behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing an SU(2)+_+ ×\times SU(2)_- symmetry. Further, we discuss the conditions under which singlet and triplet can mix via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges. Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit coupling.Comment: 30 pages, 7 figures, 4 table

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Truth in a pill

    Get PDF
    In 1937, the elixir sulphanilamide disaster was one of the mass poisonings. It occurs due to the presence of the diluent diethylene glycol in the elixir preparation of sulphanilamide. Because of its therapeutic use, around 100 patients died. In response to the calamity, Federal Food, Drug and Cosmetic Act was passed in the year 1938 by U.S congress and this ensured the proof of safety before the drug comes to market. The similar incident occurred for thalidomide in late 1950s and early 1960s when the drug was used for the treatment of nausea in pregnant women and resulted in children with birth defects. The development of drugs is a complex and costly process and it takes around 10-15 years for the drug to develop. Because of these reasons, the development of generic drugs is essential and this review will deal about the use of generic drugs and also its advantages with limitations

    KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients

    Get PDF
    The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology
    corecore