9 research outputs found

    Apparent ileal digestibility of Maillard reaction products in growing pigs

    No full text
    Data used for the calculation of apparent digestibility values of Maillard reaction products for each experimental uni

    Processing Technologies and Cell Wall Degrading Enzymes To Improve Nutritional Value of Dried Distillers Grain with Solubles for Animal Feed: an in Vitro Digestion Study

    No full text
    Currently, the use of maize dried distillers grain with solubles (DDGS) as protein source in animal feed is limited by the inferior protein quality and high levels of non-starch polysaccharides (NSP). Processing technologies and enzymes that increase NSP degradability might improve digestive utilization of DDGS, enhancing its potential as a source of nutrients for animals. The effects of various combinations of processing technologies and commercial enzyme mixtures on in vitro digestion and subsequent fermentation of DDGS were tested. Wet-milling, extrusion, and mild hydrothermal acid treatment increased in vitro protein digestion but had no effect on NSP. Severe hydrothermal acid treatments, however, effectively solubilized NSP (48–78%). Addition of enzymes did not affect NSP solubilization in unprocessed or processed DDGS. Although the cell wall structure of DDGS seems to be resistant to most milder processing technologies, in vitro digestion of DDGS can be effectively increased by severe hydrothermal acid treatments

    Protein structural changes during processing of vegetable feed ingredients used in swine diets : Implications for nutritional value

    No full text
    Protein structure influences the accessibility of enzymes for digestion. The proportion of intramolecular β-sheets in the secondary structure of native proteins has been related to a decrease in protein digestibility. Changes to proteins that can be considered positive (for example, denaturation and random coil formation) or negative (for example, aggregation and Maillard reactions) for protein digestibility can occur simultaneously during processing. The final result of these changes on digestibility seems to be a counterbalance of the occurrence of each phenomenon. Occurrence of each phenomenon depends on the conditions applied, but also on the source and type of the protein that is processed. The correlation between denaturation enthalpy after processing and protein digestibility seems to be dependent on the protein source. Heat seems to be the processing parameter with the largest influence on changes in the structure of proteins. The effect of moisture is usually limited to the simultaneous application of heat, but increasing level of moisture during processing usually increases structural changes in proteins. The effect of shear on protein structure is commonly studied using extrusion, although the multifactorial essence of this technology does not allow disentanglement of the separate effects of each processing parameter (for example, heat, shear, moisture). Although most of the available literature on the processing of feed ingredients reports effects on protein digestibility, the mechanisms that explain these effects are usually lacking. Clarifying these mechanisms could aid in the prediction of the nutritional consequences of processing conditions

    Pelleting and extrusion can ameliorate negative effects of toasting of rapeseed meal on protein digestibility in growing pigs

    No full text
    Toasting time (TT) of rapeseed meal (RSM), the diet processing (DP) method and the interaction between both on the apparent CP digestion along the gastrointestinal tract and the apparent ileal digestibility (AID) of amino acids of growing pigs were investigated. The experiment consisted of a 3Ă—3 factorial design of TT of RSM (0, 60 and 120 min) and DP method (mash, pelleting and extrusion). In total, 81 boars with a starting BW of 20 kg were euthanized 4 h after their last feeding. The gastrointestinal tract was dissected and the small intestine divided in three sections of similar length. Samples were collected from the stomach, 1.5 m from the ends of each of the three sections of the small intestine, and the rectum. The apparent digestibility (AD) of CP for each of the small intestine sections was used to calculate the rate of CP digestion. Increasing the TT of RSM resulted in lower protein solubility, lower lysine/reactive lysine contents and higher protein denaturation, indicative of the occurrence of protein aggregation and Maillard reactions. There were significant effects (Pâ©˝0.01) of TT on the AD of CP in the different sections of the gastrointestinal tract. The rate of CP digestion of the 0 min toasted RSM diets was 23% and 35% higher than that of the 60 and 120 min toasted RSM diets, respectively. There was a significant interaction (P=0.04) between TT and DP for the AID of CP. Although pelleting of the 0 and 60 min toasted RSM diets did not change the AID of CP with respect to the mash diets, pelleting of the 120 min toasted RSM diet increased the AID of CP by 9.3% units. Extrusion increased the AID of CP of the 0 and 60 min toasted RSM diets by 3.4% and 4.3% units with respect to the mash diets, whereas extrusion of the 120 min toasted RSM diet increased the AID of CP by 6.9% units. Similar positive effects of pelleting and extrusion were obtained for the AID of lysine and reactive lysine, especially in the diets with higher TT. In conclusion, processing (pelleting and extrusion) of RSM containing diets can ameliorate the negative effects of RSM toasting on protein and amino acid digestibility; these effects were larger for the RSM toasted for longer times

    The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review

    No full text
    Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption

    Pelleting and extrusion can ameliorate negative effects of toasting of rapeseed meal on protein digestibility in growing pigs

    No full text
    Toasting time (TT) of rapeseed meal (RSM), the diet processing (DP) method and the interaction between both on the apparent CP digestion along the gastrointestinal tract and the apparent ileal digestibility (AID) of amino acids of growing pigs were investigated. The experiment consisted of a 3Ă—3 factorial design of TT of RSM (0, 60 and 120 min) and DP method (mash, pelleting and extrusion). In total, 81 boars with a starting BW of 20 kg were euthanized 4 h after their last feeding. The gastrointestinal tract was dissected and the small intestine divided in three sections of similar length. Samples were collected from the stomach, 1.5 m from the ends of each of the three sections of the small intestine, and the rectum. The apparent digestibility (AD) of CP for each of the small intestine sections was used to calculate the rate of CP digestion. Increasing the TT of RSM resulted in lower protein solubility, lower lysine/reactive lysine contents and higher protein denaturation, indicative of the occurrence of protein aggregation and Maillard reactions. There were significant effects (Pâ©˝0.01) of TT on the AD of CP in the different sections of the gastrointestinal tract. The rate of CP digestion of the 0 min toasted RSM diets was 23% and 35% higher than that of the 60 and 120 min toasted RSM diets, respectively. There was a significant interaction (P=0.04) between TT and DP for the AID of CP. Although pelleting of the 0 and 60 min toasted RSM diets did not change the AID of CP with respect to the mash diets, pelleting of the 120 min toasted RSM diet increased the AID of CP by 9.3% units. Extrusion increased the AID of CP of the 0 and 60 min toasted RSM diets by 3.4% and 4.3% units with respect to the mash diets, whereas extrusion of the 120 min toasted RSM diet increased the AID of CP by 6.9% units. Similar positive effects of pelleting and extrusion were obtained for the AID of lysine and reactive lysine, especially in the diets with higher TT. In conclusion, processing (pelleting and extrusion) of RSM containing diets can ameliorate the negative effects of RSM toasting on protein and amino acid digestibility; these effects were larger for the RSM toasted for longer times

    Effects of Toasting Time on Digestive Hydrolysis of Soluble and Insoluble 00-Rapeseed Meal Proteins

    No full text
    Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was performed with pancreatic proteases to represent in vitro protein digestibility. Increasing the toasting time of RSM linearly decreased the rate of protein hydrolysis of RSM and the insoluble protein fractions. The extent of hydrolysis was, on average, 44% higher for the insoluble compared with the soluble protein fraction. In contrast, the rate of protein hydrolysis of the soluble protein fraction was 3–9-fold higher than that of the insoluble protein fraction. The rate of hydrolysis of the insoluble protein fraction linearly decreased by more than 60% when comparing the untoasted to the 120 min toasted RSM. Increasing the toasting time elicited the formation of Maillard reaction products (furosine, N (ε)-carboxymethyl-lysine and N (ε)-carboxyethyl-lysine) and disulfide bonds in the insoluble protein fraction, which is proposed to explain the reduction in the hydrolysis rate of this fraction. Overall, longer toasting times increased the size of the peptides resulting after hydrolysis of the RSM and the insoluble protein fraction. The hydrolysis kinetics of the soluble and insoluble protein fractions and the proportion of soluble:insoluble proteins in the RSM explain the reduction in the rate of protein hydrolysis observed in the RSM with increasing toasting time
    corecore