5,967 research outputs found
10 THz Ultrafast Function Generator - generation of rectangular and triangular pulse trains-
We report the synthesis of arbitrary optical waveforms by manipulating the
spectral phases of Raman sidebands with a wide frequency spacing line-by-line.
Trains of rectangular and triangular pulses are stably produced at an ultrahigh
repetition rate of 10.6229 THz, reminiscent of an ultrafast function generator.Comment: 7 Pages, 5 Figure
ELAN as flexible annotation framework for sound and image processing detectors
Annotation of digital recordings in humanities research still is, to a largeextend, a process that is performed manually. This paper describes the firstpattern recognition based software components developed in the AVATecH projectand their integration in the annotation tool ELAN. AVATecH (AdvancingVideo/Audio Technology in Humanities Research) is a project that involves twoMax Planck Institutes (Max Planck Institute for Psycholinguistics, Nijmegen,Max Planck Institute for Social Anthropology, Halle) and two FraunhoferInstitutes (Fraunhofer-Institut für Intelligente Analyse- undInformationssysteme IAIS, Sankt Augustin, Fraunhofer Heinrich-Hertz-Institute,Berlin) and that aims to develop and implement audio and video technology forsemi-automatic annotation of heterogeneous media collections as they occur inmultimedia based research. The highly diverse nature of the digital recordingsstored in the archives of both Max Planck Institutes, poses a huge challenge tomost of the existing pattern recognition solutions and is a motivation to makesuch technology available to researchers in the humanities
Nonlinearities and Effects of Transverse Beam Size in Beam Position Monitors (revised)
The fields produced by a long beam with a given transverse charge
distribution in a homogeneous vacuum chamber are studied. Signals induced by a
displaced finite-size beam on electrodes of a beam position monitor (BPM) are
calculated and compared to those produced by a pencil beam. The non-linearities
and corrections to BPM signals due to a finite transverse beam size are
calculated for an arbitrary chamber cross section. Simple analytical
expressions are given for a few particular transverse distributions of the beam
current in a circular or rectangular chamber. Of particular interest is a
general proof that in an arbitrary homogeneous chamber the beam-size
corrections vanish for any axisymmetric beam current distribution.Comment: REVTeX, 8 pages, 9 figures. Corrected Eqs. (7),(22),(25) and Figs.
2-9. Expande
Reverse-selective diffusion in nanocomposite membranes
The permeability of certain polymer membranes with impenetrable
nanoinclusions increases with the particle volume fraction (Merkel et al.,
Science, 296, 2002). This intriguing observation contradicts even qualitative
expectations based on Maxwell's classical theory of conduction/diffusion in
composites with homogeneous phases. This letter presents a simple theoretical
interpretation based on classical models of diffusion and polymer physics. An
essential feature of the theory is a polymer-segment depletion layer at the
inclusion-polymer interface. The accompanying increase in free volume leads to
a significant increase in the local penetrant diffusivity, which, in turn,
increases the bulk permeability while exhibiting reverse selectivity. This
model captures the observed dependence of the bulk permeability on the
inclusion size and volume fraction, providing a straightforward connection
between membrane microstructure and performance
A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions
A new computational method is presented to resolve hydrodynamic interactions
acting on solid particles immersed in incompressible host fluids. In this
method, boundaries between solid particles and host fluids are replaced with a
continuous interface by assuming a smoothed profile. This enabled us to
calculate hydrodynamic interactions both efficiently and accurately, without
neglecting many-body interactions. The validity of the method was tested by
calculating the drag force acting on a single cylindrical rod moving in an
incompressible Newtonian fluid. This method was then applied in order to
simulate sedimentation process of colloidal dispersions.Comment: 7pages, 7 figure
Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction
In this paper we demonstrate the feasibility and utility of an augmented
version of the Gibbs ensemble Monte Carlo method for computing the phase
behavior of systems with strong, extremely short-ranged attractions. For
generic potential shapes, this approach allows for the investigation of
narrower attractive widths than those previously reported. Direct comparison to
previous self-consistent Ornstein-Zernike approximation calculations are made.
A preliminary investigation of out-of-equilibrium behavior is also performed.
Our results suggest that the recent observations of stable cluster phases in
systems without long-ranged repulsions are intimately related to gas-crystal
and metastable gas-liquid phase separation.Comment: 10 pages, 8 figure
LONTalk as a Standard Protocol For Underwater Sensor Platforms
Proceedings IEEE, Oceans 97, Halifax, Oct. 1997 IEEE CD-ROM 0-7803-4111-
Electrophoresis of a polyelectrolyte through a nanopore
A hydrodynamic model for determining the electrophoretic speed of a
polyelectrolyte through a nanopore is presented. It is assumed that the speed
is determined by a balance of electrical and viscous forces arising from within
the pore and that classical continuum electrostatics and hydrodynamics may be
considered applicable. An explicit formula for the translocation speed as a
function of the pore geometry and other physical parameters is obtained and is
shown to be consistent with experimental measurements on DNA translocation
through nanopores in silicon membranes. Experiments also show a weak dependence
of the translocation speed on polymer length that is not accounted for by the
present model. It is hypothesized that this is due to secondary effects that
are neglected here.Comment: 5 pages, 2 column, 2 figure
Multiepoch Radial Velocity Observations of L Dwarfs
We report on the development of a technique for precise radial-velocity
measurements of cool stars and brown dwarfs in the near infrared. Our technique
is analogous to the Iodine (I2) absorption cell method that has proven so
successful in the optical regime. We rely on telluric CH4 absorption features
to serve as a wavelength reference, relative to which we measure Doppler shifts
of the CO and H2O features in the spectra of our targets. We apply this
technique to high-resolution (R~50,000) spectra near 2.3 micron of nine L
dwarfs taken with the Phoenix instrument on Gemini-South and demonstrate a
typical precision of 300 m/s. We conduct simulations to estimate our expected
precision and show our performance is currently limited by the signal-to-noise
of our data. We present estimates of the rotational velocities and systemic
velocities of our targets. With our current data, we are sensitive to
companions with M sin i > 2MJ in orbits with periods less than three days. We
identify no companions in our current data set. Future observations with
improved signal-to-noise should result in radial-velocity precision of 100 m/s
for L dwarfs.Comment: Accepted for publication in ApJ, 24 pages, 7 figure
- …
