In this paper we demonstrate the feasibility and utility of an augmented
version of the Gibbs ensemble Monte Carlo method for computing the phase
behavior of systems with strong, extremely short-ranged attractions. For
generic potential shapes, this approach allows for the investigation of
narrower attractive widths than those previously reported. Direct comparison to
previous self-consistent Ornstein-Zernike approximation calculations are made.
A preliminary investigation of out-of-equilibrium behavior is also performed.
Our results suggest that the recent observations of stable cluster phases in
systems without long-ranged repulsions are intimately related to gas-crystal
and metastable gas-liquid phase separation.Comment: 10 pages, 8 figure