4,289 research outputs found
Source monitoring and memory confidence in schizophrenia
BACKGROUND: The present study attempted to extend previous research on source monitoring deficits in schizophrenia. We hypothesized that patients would show a bias to attribute self-generated words to an external source. Furthermore, it was expected that schizophrenic patients would be overconfident regarding false memory attributions. METHOD: Thirty schizophrenic and 21 healthy participants were instructed to provide a semantic association for 20 words. Subsequently, a list was read containing experimenter- and self-generated words as well as new words. The subject was required to identify each item as old/new, name the source. and state the degree of confidence for the source attribution. RESULTS: Schizophrenic patients displayed a significantly increased number of source attribution errors and were significantly more confident than controls that a false source attribution response was true. The latter bias was ameliorated by higher doses of neuroleptics. CONCLUSIONS: It is inferred that a core cognitive deficit underlying schizophrenia is a failure to distinguish false from true mnestic contents
Polar and magnetic order in GaV4Se8
In the present work, we provide results from specific heat, magnetic
susceptibility, dielectric constant, ac conductivity, and electrical
polarization measurements performed on the lacunar spinel GaV4Se8. With
decreasing temperature, we observe a transition from the paraelectric and
paramagnetic cubic state into a polar, probably ferroelectric state at 42 K
followed by magnetic ordering at 18 K. The polar transition is likely driven by
the Jahn-Teller effect due to the degeneracy of the V4 cluster orbitals. The
excess polarization arising in the magnetic phase indicates considerable
magnetoelectric coupling. Overall, the behavior of GaV4Se8 in many respects is
similar to that of the skyrmion host GaV4S8, exhibiting a complex interplay of
orbital, spin, lattice, and polar degrees of freedom. However, its dielectric
behavior at the polar transition markedly differs from that of the Jahn-Teller
driven ferroelectric GeV4S8, which can be ascribed to the dissimilar electronic
structure of the Ge compound.Comment: 7 pages, 6 figures. Revised version according to suggestions of
referee
Performance of CVD Diamond Single Crystals as Side-bounce Monochromators in the Laue Geometry at High Photon Energies
We report on performance of chemical vapor deposited (CVD) single crystal
diamond plates as side bounce monochromators for high photon energies
(~20 keV) in the Laue geometry. Several crystals were tested
in-operando high-heat-load conditions at A1 undulator station of Cornell High
Energy Synchrotron Source. Up to 10 enhancement in the reflected x-ray
flux was observed compared to that delivered by IIa diamond plates grown by
high-pressure high-temperature method. Wavefront distortions were measured
using analyzer-based x-ray diffraction imaging. Focusing of a portion of the
reflected beam was demonstrated using Pt-coated mono capillary optics at a
photon energy of 46 keV
Portable Multigas Monitors for International Space Station
The Environmental Health System (EHS) on International Space Station (ISS) includes portable instruments to measure various cabin gases that acutely impact crew health. These hand-held devices measure oxygen, carbon dioxide, carbon monoxide, hydrogen chloride and hydrogen cyanide. The oxygen and carbon dioxide units also serve to back up key functions of the Major Constituent Analyzers. Wherever possible, commercial off-the-shelf (COTS) devices are employed by EHS to save development and sustaining costs. COTS hardware designed for general terrestrial applications however has limitations such as no pressure compensation, limited life of the active sensor, calibration drift, battery issues, unpredictable vendor support and obsolescence. The EHS fleet (inflight and ground inventory) of instruments is both aging and dwindling in number. With the retirement of the US Space Shuttle, maintenance of on-orbit equipment becomes all the more difficult. A project is underway to search for gas monitoring technology that is highly reliable and stable for years. Tunable Diode Laser Spectroscopy (TDLS) seems to be the front-runner technology, but generally is not yet commercially available in portable form. NASA has fostered the development of TDLS through the Small Business Innovative Research (SBIR) program. A number of gases of interest to the aerospace and submarine communities can be addressed by TDLS including the list mentioned above plus hydrogen fluoride, ammonia and water (humidity). There are several different forms of TDLS including photoacoustic and direct absorption spectroscopy using various multipass cell geometries. This paper describes the history of portable gas monitoring on NASA spacecraft and provides a status of the development of TDLS based instruments. Planned TDLS flight experiments on ISS could lead both to operational use on ISS and important roles in future Exploration spacecraft and habitats
Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time.
Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp.
Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory
Structural, magnetic, electric, dielectric, and thermodynamic properties of multiferroic GeV4S8
The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the
Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below
about 14 K. In addition to this orbitally driven ferroelectricity, lacunar
spinels are an interesting material class, as the vanadium ions form V4
clusters representing stable molecular entities with a common electron
distribution and a well-defined level scheme of molecular states resulting in a
unique spin state per V4 molecule. Here we report detailed x-ray, magnetic
susceptibility, electrical resistivity, heat capacity, thermal expansion, and
dielectric results to characterize the structural, electric, dielectric,
magnetic, and thermodynamic properties of this interesting material, which also
exhibits strong electronic correlations. From the magnetic susceptibility, we
determine a negative Curie-Weiss temperature, indicative for antiferromagnetic
exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular
clusters. The low-temperature heat capacity provides experimental evidence for
gapped magnon excitations. From the entropy release, we conclude about strong
correlations between magnetic order and lattice distortions. In addition, the
observed anomalies at the phase transitions also indicate strong coupling
between structural and electronic degrees of freedom. Utilizing dielectric
spectroscopy, we find the onset of significant dispersion effects at the polar
Jahn-Teller transition. The dispersion becomes fully suppressed again with the
onset of spin order. In addition, the temperature dependencies of dielectric
constant and specific heat possibly indicate a sequential appearance of orbital
and polar order.Comment: 15 pages, 9 figure
Revisiting Static and Dynamic Spin Ice Correlations in Ho2Ti2O7
Elastic and inelastic neutron scattering studies have been carried out on the
pyrochlore magnet Ho2Ti2O7. Measurements in zero applied magnetic field show
that the disordered spin ice ground state of Ho2Ti2O7 is characterized by a
pattern of rectangular diffuse elastic scattering within the [HHL] plane of
reciprocal space, which closely resembles the zone boundary scattering seen in
its sister compound Dy2Ti2O7. Well-defined peaks in the zone boundary
scattering develop only within the spin ice ground state below ~ 2 K. In
contrast, the overall diffuse scattering pattern evolves on a much higher
temperature scale of ~ 17 K. The diffuse scattering at small wavevectors below
[001] is found to vanish on going to Q=0, an explicit signature of expectations
for dipolar spin ice. Very high energy-resolution inelastic measurements reveal
that the spin ice ground state below ~ 2 K is also characterized by a
transition from dynamic to static spin correlations on the time scale of
10^{-9} seconds. Measurements in a magnetic field applied along the
[10] direction in zero-field cooled conditions show that the system
can be broken up into orthogonal sets of polarized alpha chains along
[10] and quasi-one-dimensional beta chains along [110]. Three
dimensional correlations between beta chains are shown to be very sensitive to
the precise alignment of the [10] externally applied magnetic field.Comment: 11 pages, 10 figures. Submitted for publicatio
Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy
The conducting interface of LaAlO/SrTiO heterostructures has been
studied by hard X-ray photoelectron spectroscopy. From the Ti~2 signal and
its angle-dependence we derive that the thickness of the electron gas is much
smaller than the probing depth of 4 nm and that the carrier densities vary with
increasing number of LaAlO overlayers. Our results point to an electronic
reconstruction in the LaAlO overlayer as the driving mechanism for the
conducting interface and corroborate the recent interpretation of the
superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless
type.Comment: 4 pages, 4 figure
- …
