15 research outputs found

    Radiographic Progression Based on Baseline Characteristics From TNF Inhibitor Biosimilar Studies in Patients With Rheumatoid Arthritis

    Get PDF
    Objective Phase III clinical trials of the tumour necrosis factor inhibitors SB4, SB2, and SB5 (biosimilars to etanercept, infliximab, and adalimumab, respectively) have demonstrated efficacy in moderate-to-severe rheumatoid arthritis (RA). Data from these trials were used to identify baseline characteristics associated with radiographic progression and to build a matrix risk model for its prediction. Methods Patients with radiographic progression and baseline demographic and disease characteristic data were pooled across the 3 phase III studies of each biosimilar and its reference product. Baseline demographics and disease characteristics were evaluated for their relationship with radiographic progression (1-year mean change in mTSS > 0); 3 factors were selected based on strongest Pearson’s correlation coefficient with the change in modified Total Sharp Score. Univariate logistic regression was performed to assess the association between each baseline factor and the rate of radiographic progression, with subsequent matrix model development performed using multivariate logistic regression. Results A total of 1371 patients were included in the analysis, with a radiographic progression rate of 27.4%. The 3 baseline predictors of radiographic progression, based on Pearson’s correlation coefficient, were 28 swollen joint count (SJC28), C-reactive protein (CRP), and physician global assessment (PhGA). A matrix model showed that the predicted risk of radiographic progression was higher with the increased level of SJC28, CRP, and PhGA (P < 0.001). Conclusions In this pooled analysis of phase III clinical trial data of biosimilars for RA, identifiable baseline factors (SJC28, CRP, and PhGA) associated with radiographic progression were similar to those described in prior studies. Even though radiographic progression was minimal, a small number of patients who have increased SJC28, CRP, and PhGA at baseline should be closely monitored and follow treat-to-target approach. Clinical trial registration numbers EudraCT 2012-005026-30. Registered 30 April 2013, https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-005026-30/results EudraCT 2012-005733-37. Registered 10 July 2013, https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-005733-37/results EudraCT 2013-005013-13. Registered 01 April 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-005013-13/result

    Analysis of the Petunia TM6 MADS Box Gene Reveals Functional Divergence within the DEF/AP3 Lineage

    No full text
    Antirrhinum majus DEFICIENS (DEF) and Arabidopsis thaliana APETALA3 (AP3) MADS box proteins are required to specify petal and stamen identity. Sampling of DEF/AP3 homologs revealed two types of DEF/AP3 proteins, euAP3 and TOMATO MADS BOX GENE6 (TM6), within core eudicots, and we show functional divergence in Petunia hybrida euAP3 and TM6 proteins. Petunia DEF (also known as GREEN PETALS [GP]) is expressed mainly in whorls 2 and 3, and its expression pattern remains unchanged in a blind (bl) mutant background, in which the cadastral C-repression function in the perianth is impaired. Petunia TM6 functions as a B-class organ identity protein only in the determination of stamen identity. Atypically, Petunia TM6 is regulated like a C-class rather than a B-class gene, is expressed mainly in whorls 3 and 4, and is repressed by BL in the perianth, thereby preventing involvement in petal development. A promoter comparison between DEF and TM6 indicates an important change in regulatory elements during or after the duplication that resulted in euAP3- and TM6-type genes. Surprisingly, although TM6 normally is not involved in petal development, 35S-driven TM6 expression can restore petal development in a def (gp) mutant background. Finally, we isolated both euAP3 and TM6 genes from seven solanaceous species, suggesting that a dual euAP3/TM6 B-function system might be the rule in the Solanaceae

    Identification of candidate genes involved in Witches' broom disease resistance in a segregating mapping population of Theobroma cacao L. in Brazil

    No full text
    Background: Witches' broom disease (WBD) caused by the fungus Moniliophthora perniciosa is responsible for considerable economic losses for cacao producers. One of the ways to combat WBD is to plant resistant cultivars. Resistance may be governed by a few genetic factors, mainly found in wild germplasm. Results: We developed a dense genetic linkage map with a length of 852.8 cM that contains 3,526 SNPs and is based on the MP01 mapping population, which counts 459 trees from a cross between the resistant 'TSH 1188' and the tolerant 'CCN 51' at the Mars Center for Cocoa Science in Barro Preto, Bahia, Brazil. Seven quantitative trait loci (QTL) that are associated with WBD were identified on five different chromosomes using a multi-trait QTL analysis for outbreeders. Phasing of the haplotypes at the major QTL region on chromosome IX on a diversity panel of genotypes clearly indicates that the major resistance locus comes from a well-known source of WBD resistance, the clone 'SCAVINA 6'. Various potential candidate genes identified within all QTL may be involved in different steps leading to disease resistance. Preliminary expression data indicate that at least three of these candidate genes may play a role during the first 12 h after infection, with clear differences between 'CCN 51' and 'TSH 1188'. Conclusions: We combined the information from a large mapping population with very distinct parents that segregate for WBD, a dense set of mapped markers, rigorous phenotyping capabilities and the availability of a sequenced genome to identify several genomic regions that are involved in WBD resistance. We also identified a novel source of resistance that most likely comes from the 'CCN 51' parent. Thanks to the large population size of the MP01 population, we were able to pick up QTL and markers with relatively small effects that can contribute to the creation and selection of more tolerant/resistant plant material.</p

    Exploitation of the ribosomal protein L10 R98S mutation to enhance recombinant protein production in mammalian cells

    No full text
    Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10‐R98S). Our data support that RPL10‐R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock‐in of RPL10‐R98S was associated with a 1.7‐ to 2.5‐fold increased production of four transiently expressed recombinant proteins and 1.7‐fold for one out of two stably expressed proteins. In CHO‐S cells, eGFP reached a 2‐fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10‐R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10‐R98S phenotypes can maximize its exploitability for the mammalian protein production industry

    Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells

    Get PDF
    textabstractSomatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH
    corecore