702 research outputs found
Blind Normalization of Speech From Different Channels
We show how to construct a channel-independent representation of speech that
has propagated through a noisy reverberant channel. This is done by blindly
rescaling the cepstral time series by a non-linear function, with the form of
this scale function being determined by previously encountered cepstra from
that channel. The rescaled form of the time series is an invariant property of
it in the following sense: it is unaffected if the time series is transformed
by any time-independent invertible distortion. Because a linear channel with
stationary noise and impulse response transforms cepstra in this way, the new
technique can be used to remove the channel dependence of a cepstral time
series. In experiments, the method achieved greater channel-independence than
cepstral mean normalization, and it was comparable to the combination of
cepstral mean normalization and spectral subtraction, despite the fact that no
measurements of channel noise or reverberations were required (unlike spectral
subtraction).Comment: 25 pages, 7 figure
On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes
This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for decades in statistical Pattern Recognition (PR) applications, and have numerous applications because of their known error bounds. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a priori target classes (values) of selected neighbors to, for example, predict the target class of the tested sample. Recently, an implementation of the k-NN, named as the Locally Linear Reconstruction (LLR) [11], has been proposed. The salient feature of the latter is that by invoking a quadratic optimization process, it is capable of systematically setting model parameters, such as the number of neighbors (specified by the parameter, k) and the weights. However, the LLR takes more time than other conventional methods when it has to be applied to classification tasks. To overcome this problem, we propose a strategy of using a PRS to efficiently compute the optimization problem. In this paper, we demonstrate, first of all, that by completely discarding the points not included by the PRS, we can obtain a reduced set of sample points, using which, in turn, the quadratic optimization problem can be computed far more expediently. The values of the corresponding indices are comparable to those obtained with the original training set (i.e., the one which considers all the data points) even though the computations required to obtain the prototypes and the corresponding classification accuracies are noticeably less. The proposed method has been tested on artificial and real-life data sets, and the results obtained are very promising, and has potential in PR applications
Validation of nonlinear PCA
Linear principal component analysis (PCA) can be extended to a nonlinear PCA
by using artificial neural networks. But the benefit of curved components
requires a careful control of the model complexity. Moreover, standard
techniques for model selection, including cross-validation and more generally
the use of an independent test set, fail when applied to nonlinear PCA because
of its inherent unsupervised characteristics. This paper presents a new
approach for validating the complexity of nonlinear PCA models by using the
error in missing data estimation as a criterion for model selection. It is
motivated by the idea that only the model of optimal complexity is able to
predict missing values with the highest accuracy. While standard test set
validation usually favours over-fitted nonlinear PCA models, the proposed model
validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure
Applications of Information Theory to Analysis of Neural Data
Information theory is a practical and theoretical framework developed for the
study of communication over noisy channels. Its probabilistic basis and
capacity to relate statistical structure to function make it ideally suited for
studying information flow in the nervous system. It has a number of useful
properties: it is a general measure sensitive to any relationship, not only
linear effects; it has meaningful units which in many cases allow direct
comparison between different experiments; and it can be used to study how much
information can be gained by observing neural responses in single trials,
rather than in averages over multiple trials. A variety of information
theoretic quantities are commonly used in neuroscience - (see entry
"Definitions of Information-Theoretic Quantities"). In this entry we review
some applications of information theory in neuroscience to study encoding of
information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure
Visualizing dimensionality reduction of systems biology data
One of the challenges in analyzing high-dimensional expression data is the
detection of important biological signals. A common approach is to apply a
dimension reduction method, such as principal component analysis. Typically,
after application of such a method the data is projected and visualized in the
new coordinate system, using scatter plots or profile plots. These methods
provide good results if the data have certain properties which become visible
in the new coordinate system and which were hard to detect in the original
coordinate system. Often however, the application of only one method does not
suffice to capture all important signals. Therefore several methods addressing
different aspects of the data need to be applied. We have developed a framework
for linear and non-linear dimension reduction methods within our visual
analytics pipeline SpRay. This includes measures that assist the interpretation
of the factorization result. Different visualizations of these measures can be
combined with functional annotations that support the interpretation of the
results. We show an application to high-resolution time series microarray data
in the antibiotic-producing organism Streptomyces coelicolor as well as to
microarray data measuring expression of cells with normal karyotype and cells
with trisomies of human chromosomes 13 and 21
Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction
It is difficult to find the optimal sparse solution of a manifold learning
based dimensionality reduction algorithm. The lasso or the elastic net
penalized manifold learning based dimensionality reduction is not directly a
lasso penalized least square problem and thus the least angle regression (LARS)
(Efron et al. \cite{LARS}), one of the most popular algorithms in sparse
learning, cannot be applied. Therefore, most current approaches take indirect
ways or have strict settings, which can be inconvenient for applications. In
this paper, we proposed the manifold elastic net or MEN for short. MEN
incorporates the merits of both the manifold learning based dimensionality
reduction and the sparse learning based dimensionality reduction. By using a
series of equivalent transformations, we show MEN is equivalent to the lasso
penalized least square problem and thus LARS is adopted to obtain the optimal
sparse solution of MEN. In particular, MEN has the following advantages for
subsequent classification: 1) the local geometry of samples is well preserved
for low dimensional data representation, 2) both the margin maximization and
the classification error minimization are considered for sparse projection
calculation, 3) the projection matrix of MEN improves the parsimony in
computation, 4) the elastic net penalty reduces the over-fitting problem, and
5) the projection matrix of MEN can be interpreted psychologically and
physiologically. Experimental evidence on face recognition over various popular
datasets suggests that MEN is superior to top level dimensionality reduction
algorithms.Comment: 33 pages, 12 figure
The DEEP2 Galaxy Redshift Survey: Spectral classification of galaxies at z~1
We present a Principal Component Analysis (PCA)-based spectral
classification, eta, for the first 5600 galaxies observed in the DEEP2 Redshift
Survey. This parameter provides a very pronounced separation between absorption
and emission dominated galaxy spectra - corresponding to passively evolving and
actively star-forming galaxies in the survey respectively. In addition it is
shown that despite the high resolution of the observed spectra, this parameter
alone can be used to quite accurately reconstruct any given galaxy spectrum,
suggesting there are not many `degrees of freedom' in the observed spectra of
this galaxy population. It is argued that this form of classification, eta,
will be particularly valuable in making future comparisons between high and
low-redshift galaxy surveys for which very large spectroscopic samples are now
readily available, particularly when used in conjunction with high-resolution
spectral synthesis models which will be made public in the near future. We also
discuss the relative advantages of this approach to distant galaxy
classification compared to other methods such as colors and morphologies.
Finally, we compare the classification derived here with that adopted for the
2dF Galaxy Redshift Survey and in so doing show that the two systems are very
similar. This will be particularly useful in subsequent analyses when making
comparisons between results from each of these surveys to study evolution in
the galaxy populations and large-scale structure.Comment: 10 pages, 9 figures, Accepted for publication in Ap
Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait
Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes
Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
Recurrent neural networks (RNNs) are widely used in computational
neuroscience and machine learning applications. In an RNN, each neuron computes
its output as a nonlinear function of its integrated input. While the
importance of RNNs, especially as models of brain processing, is undisputed, it
is also widely acknowledged that the computations in standard RNN models may be
an over-simplification of what real neuronal networks compute. Here, we suggest
that the RNN approach may be made both neurobiologically more plausible and
computationally more powerful by its fusion with Bayesian inference techniques
for nonlinear dynamical systems. In this scheme, we use an RNN as a generative
model of dynamic input caused by the environment, e.g. of speech or kinematics.
Given this generative RNN model, we derive Bayesian update equations that can
decode its output. Critically, these updates define a 'recognizing RNN' (rRNN),
in which neurons compute and exchange prediction and prediction error messages.
The rRNN has several desirable features that a conventional RNN does not have,
for example, fast decoding of dynamic stimuli and robustness to initial
conditions and noise. Furthermore, it implements a predictive coding scheme for
dynamic inputs. We suggest that the Bayesian inversion of recurrent neural
networks may be useful both as a model of brain function and as a machine
learning tool. We illustrate the use of the rRNN by an application to the
online decoding (i.e. recognition) of human kinematics
- …
